Защемление плиты перекрытия в стене

Содержание

Защемление плиты перекрытия в стене

Как опирать сборные плиты перекрытия

Назрела тема для этой статьи – уж очень много ошибок допускают строители.

Что представляет собой сборная плита (пустотная или ребристая)? Это прежде всего армированная железобетонная конструкция, рассчитанная на определенную работу. Любой железобетон может работать только при такой схеме, когда напряжения в нем может подхватить рабочая арматура.

В сборных плитах рабочая арматура расположена только в нижней зоне плиты и только вдоль плиты. Что это значит? Это значит, что плита без разрушения может изгибаться только в продольном направлении и только так, чтобы изгиб плиты был направлен вниз.

Как видно из рисунка, когда плита изгибается, ее нижняя часть растягивается, и арматура при этом подхватывает это напряжение растяжения, т.к. бетон на это не способен. Бетон без арматуры при изгибе будет только трещать и разрушаться. При малейшем изгибе нам нужно устанавливать арматуру, которая будет брать растягивающие напряжения изгиба на себя.

Теперь вернемся к сборным плитам. Мы знаем, что рабочая арматура плиты расположена только вдоль плиты и только у ее нижней грани.

Рассмотрим ниже различные ситуации опирания плит перекрытия.

Как можно опирать сборные плиты перекрытия

1) Классический способ опирания плиты: по двум сторонам.

Здесь все выдержано в лучших традициях: плита изгибается под весом нагрузки, рабочая арматура подхватывает напряжения изгиба, и если нагрузка не превышает несущей плиты, никакого разрушения не происходит – все работает по плану.

2) Опирание плиты по трем сторонам (двум коротким и одной длинной).

Этот способ опирания называется еще опиранием с задвижкой плиты на стену. Его допускается применять, когда по ширине пролета плиты не размещаются, а монолитный участок делать нецелесообразно. По сравнению с предыдущим вариантом этот вариант для работы плиты похуже, но в принципе, он не запрещен. Главное помнить: желательно плиту по длинной стороне не заводить в стену глубже, чем на высоту плиты (при высоте плиты 220 мм плиту не опирать глубже, чем на 220 мм), чтобы не образовалось защемление. Что такое защемление, и чем оно вредно для сборных плит, будет рассмотрено в статье чуть дальше.

В данном случае изгибается не вся плита, а только свободный ее край. Но все равно при этом в работу вступает продольная рабочая арматура и подхватывает растягивающие напряжения – просто не во всей плите, а в ее части.

Как нельзя опирать сборные плиты перекрытия

1) Опирание плиты по двум длинным сторонам.

Как мы помним, рабочая арматура в плите есть только в продольном направлении. В поперечном направлении есть только незначительная сетка, которая может воспринять нагрузку от собственного веса плиты на периоде монтажа (когда петля поднимается краном за четыре петли). И если мы обопрем плиту по двум длинным сторонам, под нагрузкой она начнет изгибаться как на рисунке, и просто не будет достаточной площади арматуры в этом направлении – плита начнет трещать. На начальном этапе нагрузку сможет воспринять имеющаяся сетка, но (повторюсь), площадь арматуры этой сетки рассчитан только на собственный вес плиты.

2) Устройство дополнительной опоры в пролете плиты.

Нужно запомнить раз и навсегда: сборные плиты работают исключительно как однопролетные. Если где-то в пролете появляется стена или колонна, происходит то, что показано на рисунке выше. Плита между опорами изгибается вниз, а над опорой происходит выгиб в противоположную сторону – с растянутой зоной вверху. Но в верхней зоне плиты у нас нет рабочей арматуры, и нам нечем воспринять растягивающие напряжения изгиба. В итоге, появляются трещины в верхней зоне плиты, как показано на рисунке. Это может быть всего одна трещина, но ее достаточно будет, чтобы со временем или сразу привести к аварийному состоянию.

3) Опирание сборной плиты на две стены с выносом части плиты в виде балкона (консоли).

Эта ситуация примерно такая же, как в предыдущем случае. Верхней арматуры нет, воспринять растяжение нечем. Чем больше длина консоли и чем больше нагрузка на ней (особенно на краю), тем быстрее произойдет разрушение.

Свес плиты в другом направлении будет таким же аварийным, как и показанный на рисунке.

4) Опирание сборной плиты на колонны (точечные опоры).

Если вы захотите опереть плиту не на стены или балки, а прямо на колонны, запомните: этого делать нельзя. Принцип работы арматуры в железобетоне следующий: растянутая арматура в плите работает только тогда, когда ее концы заведены на опору. Если под краем плиты (и под концом арматурного стержня) опоры нет, такая арматура превращается в бесполезный балласт.

На картинке мы видим вариант опирания плиты на 4 колонны. Во-первых, плита прогибается не только в продольном, но и в поперечном направлении – а как мы выяснили из пункта 1, в таком случае могут образоваться трещины. Но это не самое страшное – эти трещины просто не успеют образоваться из-за аварийной ситуации в другом направлении. Итак, во-вторых, на опору у нас попадают всего две крайние арматурины, остальные «зависли в воздухе» и в работу не включаются. А это значит, что площадь рабочей арматуры в плите уменьшилась во много раз в сравнении с требуемой. Естественно, такая плита будет стремиться разрушиться.

Лучшим выходом из такой ситуации будет устройство балок в нужном месте опирания плиты – между близко расположенными колоннами.

5) Защемление сборной плиты перекрытия.

Что такое защемление? В случае опирания плит перекрытия – это заведение плиты на стену более, чем на величину высоты сечения плиты и пригруз сверху стеной. Дело в том, что защемленные плиты работают совсем не так, как шарнирно опирающиеся. Все сборные плиты рассчитаны на шарнирное опирание (когда плита, прогинаясь, как бы поворачивается на опоре). В нормативных документах по сборным плитам четко оговорена глубина опирания, и она не должна быть не только меньше указанной – ее нельзя делать слишком большой.

Рассмотрим на рисунке, к чему приводит защемление плиты на опоре.

При шарнирном опирании плита просто поворачивается чуток на опоре и растягивается в нижней зоне – там и срабатывает нижняя рабочая арматура.

При защемлении плита слишком глубоко заведена, чтобы провернуться, в итоге она изгибается хитрым образом, когда в центре оказывается растянутой нижняя зона плиты, а у опор – верхняя. А в этой верхней зоне у нас нет достаточно арматуры, чтобы воспринять растягивающие усилия. В итоге, образуются трещины, которые особенно опасны тем, что их не видно (они скрыты под полом), но со временем они расширяются и приводят к аварийному состоянию.

Я надеюсь, данная статья наглядно продемонстрировала, как можно опирать сборные (пустотные, ребристые и полнотелые) плиты, а как нельзя.

Комментарии

Ксения, напишите мне на почту svoydom.net.uayandex.ru

Я вас проконсультирую . Бесплатно

Ксения, напишите мне на почту svoydom.net.uayandex.ru

Я вас проконсультирую. Бесплатно

Доброго дня, просьба опишите, как решать проблему, о которой написала Ксения.
Вопрос важный для многих. Заранее спасибо

Ксения, напишите мне на почту svoydom.net.uayandex.ru

Я вас проконсультирую. Бесплатно

Доброго дня, просьба опишите, как решать проблему, о которой написала Ксения.
Вопрос важный для многих. Заранее спасибо

Олег, да, это важный момент.Спасибо, что делитесь! Читатели сайта обычно изучают не только статьи, но и комментарии.

Если есть желание делиться, можете оформить в статью свои знания по нюансам устройства сборного перекрытия, а я размещу ее на сайте с указанием вашего авторства. Людям будет полезно, а я за пользу.

Просто напишите на svoydom.net.uayandex.ru

Защемление плиты перекрытия в стене

Достаточно часто плиты перекрытия для упрощения расчетов рассматриваются и рассчитываются как однопролетные безконсольные балки на шарнирных опорах. Тем не менее иногда вышележащие стены могут создавать защемление плиты на опорах и влияние этого защемления следует учитывать.

В данном случае речь не идет о жестком защемлении плиты перекрытия в стене, так как с точки зрения строительной механики одним из показателей жесткого защемления является нулевой угол поворота поперечного сечения на опоре (поэтому такая опора и рассматривается как жесткая заделка).

Тем не менее при достаточно длинных опорных участках плиты, длина которых сопоставима с толщиной стены, поперечные сечения балки действительно могут иметь нулевой угол поворота, но при этом расстояние между такими сечениями будет больше расстояния между стенами, таким образом расчетную длину пролета жестко защемленной балки следует увеличивать. Но обо всем по порядку.

Сразу скажу, что далее будут рассматриваться только однопролетные балки. Для многопролетных неразрезных балок с равными пролетами промежуточные опоры в первом приближении могут рассматриваться как жесткие защемления однопролетных балок.

Чтобы определить, как более правильно рассматривать плиту перекрытия:

а) как однопролетную безконсольную балку,

б) как однопролетную балку с консолями

или в) как жестко защемленную балку:

Рисунок 549.1. Возможные расчетные схемы для плиты с опорами на стены: а) безконсольная балка на шарнирных опорах, б) балка с двумя консолями, в) жесткозащемленная балка

следует учесть несколько факторов:

1. Соотношение длины опорного участка к высоте балки

Как правило на первом этапе расчета любая балка рассматривается как некий стержень, высота и ширина поперечного сечения которого пренебрежимо малы по сравнению с длиной. Но в данном случае при определении расчетной схемы высота балки имеет большое значение.

Если длина опорного участка lоп меньше 1/2÷2/3 высоты сечения балки h, то такая балка может рассматриваться как безконсольная однопролетная балка на шарнирных опорах.

Так как при таких параметрах на опорном участке мы имеем дело уже не со стержнем, а с массивным телом. А в массивном теле напряжения распределяются не так, как в стержне (или пластине). Кроме того, такое соотношение параметров явно свидетельствует о том, что длина опорных участков значительно меньше длины пролета.

2. Соотношение длины опорного участка к толщине стены

Когда плиты опираются не на всю толщину стены, а именно так чаще всего и бывает, то при расчетах это следует учитывать.

Если длина опорного участка lоп меньше 1/5÷1/3 толщины стены, то такая балка может рассматриваться как безконсольная однопролетная балка на шарнирных опорах.

Так как при таких параметрах на плиту будет во-первых передаваться не вся нагрузка от вышележащей стены, а только 1/3-1/5 часть. А во-вторых, в результате перераспределения напряжений в материале стены, пластических деформаций или даже частичного разрушения материала стены эта нагрузка может быть еще меньше.

3. Соотношение нагрузки от вышележащей стены к нагрузке на плиту

В малоэтажном частном строительстве, когда имеется всего 2 этажа и соответственно 3 перекрытия, нагрузка от вышележащей стены очень сильно зависит от того, какое именно перекрытие рассматривается.

Так нагрузка от вышележащей стены на перекрытие над 2 этажом будет минимальной. Нагрузка на перекрытие между 1 и 2 этажом от вышележащей стены будет больше, а ее значение зависит от различных факторов, которые будут рассмотрены ниже. Максимальная нагрузка от вышележащей стены будет на перекрытие между подвалом и 1 этажом (или перекрытие по ленточному фундаменту).

Таким образом для плит перекрытий между 2 этажом и чердаком ситуацию возможного защемления плиты в стене в большинстве случаев можно вообще не рассматривать.

Для плит перекрытий между 1 и 2 этажом такая ситуация возможна. Для плит перекрытий под 1 этажом такая ситуация наиболее вероятна.

4. Соотношение модулей упругости материалов плиты и стены

Если модуль упругости материала плиты больше или равен модулю упругости материала стены, то вероятность защемления плиты достаточно высока. Если модуль упругости материала плиты меньше модуля упругости материала стены, то вероятность защемления плиты в стене значительно меньше.

Для наглядности рассмотрим следующий, очень условный пример, когда модули упругости материала стены и плиты примерно одинаковы:

Рисунок 549.2. Возможные варианты нагрузки на плиту от вышележащей наружной стены, которые могут привести к частичному или полному защемлению.

Сразу скажу на данном рисунке показаны далеко не все возможные варианты, а лишь очень малая их часть и только для готовых плит перекрытия, а не монолитных, изготавливаемых непосредственно в процессе строительства дома.

Для монолитных плиты распределение напряжений на опорной площадке будет зависеть от различных факторов, в частности от прогибов опалубки в процессе монтажа. Тем не менее напряжения, возникающие от веса вышележащей стены, можно принимать такими же. Кроме того не учтено возможное перераспределение напряжений в материале стены под действием нагрузок, приложенных с эксцентриситетом (например от плит вышележащих перекрытий). Но продолжим.

а) После монтажа плиты перекрытия на существующую стену (рисунок 549.2.а)) в материале стены на опорной площадке и в материале плиты на опорном участке будут действовать сжимающие нормальные напряжения. В данном случае мы рассматриваем общую ситуацию, поэтому точное значение напряжений нас не интересует, пусть это будут напряжения, равные 0.5σ.

Примечание: так как плита под действием собственного веса уже может иметь некоторый прогиб (а может и не иметь или даже наоборот иметь некоторый строительный подъем, если в плите использована предварительно напряженная арматура), то для упрощения восприятия начальный угол наклона поперечного сечения плиты не показан. К тому же в любом случае при монтаже готовой плиты напряжения под опорным участком плиты будут распределены равномерно при отсутствии других значительных нагрузок на плиту в процессе монтажа.

б) После того, как будет сделана стена над плитой перекрытия, в материале плиты на опорном участке и в материале стены на опорной площадке возникнут дополнительные сжимающие напряжения. На рисунке 549.2.б) показан вариант, когда эти дополнительные сжимающие напряжения равны напряжениям возникшим в процессе монтажа плиты, пусть это тоже будут напряжения равные 0.5 σ. На лицо вроде бы явное защемление на опоре, но не будем торопиться с выводами и посмотрим, что происходит после того когда к плите приложена нагрузка.

Примечание: Вообще-то подобная ситуация наиболее вероятна для плит с относительно длинным опорным участком, длина которого сопоставима с шириной стены. Чем меньше длина опорного участка, тем больше вероятность неравномерного распределения напряжений от вышележащей стены (рассмотрение стены как стойки с шарнирными опорами или жестким защемлением на опорах и соответствующим перераспределением напряжений). Причем это перераспределение будет таким, что минимальное значение напряжений будет в начале опорного участка плиты.

1.а) Если нагрузка на плиту в процессе эксплуатации будет в 1.5 раза больше нагрузки от собственного веса плиты, то напряжения под и над опорным участком плиты распределятся примерно таким образом, как показано на рисунке 549.2.1.а) при соответствующей длине опорного участка. Как видим в этом случае ни о каком защемлении не может быть и речи. Это же можно сказать и о случаях, когда нагрузка на плиту будет еще больше.

При этом, чем меньше длина опорного участка плиты, тем больше вероятность того, что никакого защемления в стене не будет, однако при этом увеличивается вероятность пластических деформаций в материале стены на опорной площадке, как это показано на рисунке 549.2.1.б). И чем меньше длина опорного участка, тем больше вероятность не только пластических деформаций, но и частичного разрушения материала стены, как это показано на рисунке 549.2.1.в). На этих рисунках проиллюстрирована ситуация, когда предел прочности материала стены не превышает 2σ. Напряжения в материале плиты на опорных участках для упрощения восприятия на данных рисунках не показаны.

В целом для вариантов, показанных на рисунках 549.2.1.а) — в), наиболее соответствующей будет расчетная схема, показанная на рисунке 549.1.а).

2.а) Если нагрузка на плиту в процессе эксплуатации будет например в 2 раза меньше нагрузки от собственного веса плиты, то при соответствующей длине опорного участка плиты может возникнуть ситуация, показанная на рисунке 549.2.2.а).

В этом случае для приближенных расчетов можно воспользоваться расчетной схемой, показанной на рисунке 549.1.б).

Примечание: чем меньше длина опорного участка, тем больше вероятность пластических деформаций в материале стены над опорным участком плиты в месте повышенных напряжений из-за их неравномерного распределения. Это место на рисунке показано красной стрелкой. Кроме того сами по себе деформации плиты еще не означают значительного изменения положения нейтральной оси балки — плиты.

2.б) При увеличении длины опорного участка плиты возможна ситуация, показанная на рисунке 549.2.2.б). В данном случае уже можно вести речь о частичном защемлении.

В этом случае для приближенных расчетов также можно воспользоваться расчетной схемой, показанной на рисунке 549.1.б).

В этом случае также увеличивается риск пластических деформаций под опорным участком плиты.

2.в) Если длина опорного участка значительна, то при определенных условиях может возникнуть ситуация, показанная на рисунке 549.2.2.в).

В этом случае можно пользоваться расчетной схемой показанной на рисунке 549.1.в).

Конечно же при этом в свою очередь требуется сначала определить длину l’.

Как видим, возможных вариантов расчета плиты, точнее действующих на нее нагрузок, очень много. И при таких расчетах следует учитывать влияние множества факторов. В связи с этим возникает вполне логичный вопрос: как поступить человеку, задумавшему построить свой дом в одном экземпляре, к тому же собирающемуся использовать монолитные плиты перекрытия и вообще занимающемуся расчетами первый и последний раз в жизни?

Ответ на данный вопрос будет предельно прост:

В целом плиту перекрытия можно рассчитывать как балку на шарнирных опорах (или плиту опертую по контуру). При этом, если длина опорного участка плиты значительно больше высоты плиты, то в верхней зоне сечения плиты заложить арматуру, исходя из предположения, что на опоре может возникнуть жесткое защемление вышележащей стеной.

Возможно это приведет к некоторому перерасходу материалов (в данном случае арматуры), однако более-менее точный расчет такой плиты может отнять достаточно много времени или денег. По сравнению с этими расходами траты на дополнительную арматуру могут выглядеть смехотворными.

А еще у Вас есть уникальная возможность помочь автору материально. После успешного завершения перевода откроется страница с благодарностью и адресом электронной почты. Если вы хотите задать вопрос, пожалуйста, воспользуйтесь этим адресом. Спасибо. Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»

Для терминалов номер Яндекс Кошелька 410012390761783

Для Украины — номер гривневой карты (Приватбанк) 5168 7422 0121 5641

Кошелек webmoney: R158114101090

Категории:
  • Расчет конструкций . Расчетные предпосылки
Оценка пользователей: Нет Переходов на сайт: 1164 Комментарии:

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).

Admin
Оцените автора
Строительный портал
Добавить комментарий

16 − 14 =

Для вашего удобства сайт использует cookie для хранения данных. Продолжая использовать сайт, Вы даете свое согласие на работу с этими файлами
Принять
Политика конфиденциальности
Adblock
detector