Кислородопроницаемость полипропиленовых труб

Содержание

Кислородопроницаемость полипропиленовых труб

Кислородопроницаемость полипропиленовых труб

Рис.1. Сравнительные показатели температурного удлинения и кислородопроницаемости (газопроницаемости)

Как видно из Таб1 и Рис.1 все однослойные трубы имеют самую высокую степень кислородопроницаемости.

Абсолютной кислородонепроницаемостью обладают только металлополимерные трубы PERT-Al-PERT, PPR-Al-PPR.

В многослойных трубах с барьерным слоем из этилен-винилового спирта PEX-EVOH-PE показатель диффузии кислорода имеет сравнительно невысокое значение, но показатель температурного расширения соответствует однослойным трубам.

В настоящий момент только многослойные трубы PERT-Al-PERT и PEX-EVOH-PE соответствует ГОСТ Р 53603-2009 «Трубы напорные многослойные для систем водоснабжения и отопления«.

Модная новинка — полипропиленовые трубы армированные стекловолокном PPR/PPR-FG/PPR (PPR-GF-PPR) приблизилась по показателю температурного расширения к металлопластиковым трубам, но высокая кислородопроницаемость делает их непригодными для систем отопления, тем самым крайне сужается сегмент их потребления.

Теперь разобравшись с показателями кислородопроницаемости наиболее популярных полимерных трубопроводов систем отопления и водоснабжения обратимся к негативным последствиям для замкнутых систем отопления, которые порождает высокая диффузия кислорода. Для высокотемпературных и низкотемпературных систем отопления последствия кислородопроницаемости различные.

ДИФФУЗИЯ КИСЛОРОДА В ВЫСОКОТЕМПЕРАТУРНЫХ СИСТЕМАХ РАДИАТОРНОГО ОТОПЛЕНИЯ

Влияние диффузии кислорода в полимерных трубах на замкнутую высокотемпературную систему (радиаторное отопление) хорошо известно. Проникающий через стенки трубы кислород насыщает разогретый до высокой температуры теплоноситель пузырьками кислорода, порождая кавитационные процессы в насосах (Рис.2), вентилях (Рис.3), во всех других металлических элементах трубопроводной системы:

Рис.2. Разрушение водяного насоса, и скан поверхности ротора насоса (Сканирующий мультмикроском СММ-2000) в результате насыщения теплоносителя кислородом.

Рис.3. Разрушение вентиля в результате насыщения теплоносителя кислородом.

Процессы кавитации несколько усиливается образованием слабых кислот в теплоносителе в результате повышения концентрации того же кислорода.

Высокая кислородопроницаемость полимерных труб может привести к разрушению металлических узлов в довольно короткие сроки: 3-5 лет.

Благодаря достижениям производителей полимеров современные полимерный трубы обрели высокую долговечность (50-100 лет), но применение полимерных труб с высокой диффузией кислорода в высокотемпературных системах отопления сокращает срок службы трубопроводной системы в целом в несколько раз.

Трубы с высокой диффузией кислорода, применение которых недопустимо в высокотемпературных замкнутых системах отопления

  • PEX (Однослойные трубы из сшитого полиэтилена)
  • PPR (Однослойные трубы из полипропилена)
  • PPR-FG-PPR (Полипропиленовые трубы армированные стекловолокном PPR-GF-PPR, PPR-GF)

ДИФФУЗИЯ КИСЛОРОДА В ЗАМКНУТЫХ НИЗКОТЕМПЕРАТУРНЫХ СИСТЕМАХ ОТОПЛЕНИЯ (ТЕПЛЫЕ ПОЛЫ, ПАНЕЛЬНОЕ ОТОПЛЕНИЕ)

До недавнего времени считалось, что диффузия кислорода создает проблемы только в высокотемпературных системах, но в конце 2011 года авторитетная шведская лаборатория EXOVA (ранее Bodycote Polymer) завершила 12-ти летние испытания полимерных труб в замкнутых низкотемпературных системах отопления (теплых полах, панельном отоплении). Результаты оказались несколько неожиданными, Рис. 4.

Рис.4. Заиливание стенок однослойной трубы в низкотемпературной системе отопления (Exova, 2011)

В низкотемпературных замкнутых системах отопления в кислородопроницаемых трубах (PEX, PPR, PPR-FG-PPR) проникающий через стенки трубы в теплоноситель кислород провоцирует развитие аэробных микроорганизмов, в результате стенки трубы заиливаются продуктами жизнедеятельности аэробных бактерий, и трубопроводная система со временем выходит их строя, теряя свою пропускную способность.

ОБЛАСТИ ПРИМЕНЕНИЯ ПОЛИМЕРНЫХ ТРУБ С УЧЕТОМ ИХ КИСЛОРОДОПРОНИЦАЕМОСТИ (ГАЗОПРОНИЦАЕМОСТИ)

Термостойкость современных трубных полимеров уже давно достигла необходимого для систем отопления и горячего водоснабжения уровня 90. 95 С. При этом долговечность большинства современных полимерных труб перешагнула 50 летный уровень, а у труб из PE-RT полиэтилена и 100 летний.

Благодаря композитным конструкциям с армированием алюминием или стекловолокном удалось достичь высокой термической стабильности труб, тем самым отпала необходимость установки температурных компенсаторов в системах отопления и горячего водоснабжения, что в свою очередь снизило затраты на прокладку трубопроводов.

Таким образом основным критерием выбора типа полимерных труб для различных систем отопления и водоснабжения становится их кислородопроницаемость, Рис.5.

Рис.5. Области применения полимерных труб с учетом диффузии кислорода и термической стабильности

Безусловно, проблемы диффузии кислорода характерны для замкнутых систем отопления. В системах водоснабжения требования к трубопроводам значительно ниже.

Холодное водоснабжение: Применяются практически все известные типы однослойных и многослойных труб в том числе ПНД трубы.

Горячее водоснабжение: В Российской практике применяют самые разнообразные трубы, но с учетом требований к термической стабильности, предпочтительны многослойные трубопроводы: металлопластиковые на основе полиэтилена и полипропилена (PE-RT-Al-PERT, PPR-Al-PPR), или полипропиленовые трубы армированные стекловолокном (PPR-FG-PPR, PPR-GF).

Высокотемпературные замкнутые системы отопления: К сожалению, в Российской практике умудряются использовать самые различные трубопроводы. Однако, надежность системы могут обеспечить только термически стабильные кислородонепроницаемые трубы: металлопластиковые PERT-AL-PERT и металлопластиковые трубы PPR-Al-PPR (чаще их называют полипропиленовые трубы армированные алюминием, например PPR-Al-PPR OXY-Plus).

Причем, применение требующих зачистки наружного слоя полипропиленовые трубы армированные перфорированной алюминиевой фольгой (PPR-Staby) недопустимо. Алюминиевая фольга в этих трубах не имеет прочного адгезионного соединения со слоями полипропилена, что не обеспечивает необходимой термической стабильности, и приводит к быстрому расслоению и вздутию трубы. Дырчатая перфорация фольги труб PPR-Staby, призванная обеспечить сцепление наружного и внутреннего слоя полипропилена, является источником диффузии кислорода.

Низкотемпературные замкнутые системы отопления: Низкотемпературные системы наиболее развивающийся и самый перспективный сегмент потребления полимерных труб. Именно в виде низкотемпературных систем реализуются современные энергоэффективные системы отопления и кондиционирования: это теплые полы, панельное отопление и кондиционирования, системы использования геотермального тепла, теплообменники тепловых насосов. Долговечность низкотемпературных систем могут обеспечить только трубы с низкой диффузией кислорода : металлопластиковые трубы PERT-Al-PERT и многослойные трубы с барьерным слоем, например, PEX-EVOH-PE.

В настоящее время металлопластиковые трубы в этой области наиболее предпочтительны — кроме абсолютной кислородопроницаемости, алюминиевый слой обеспечивает им дополнительное преимущество — они обладаю «памятью» формы, т.е. не разгибаются после изгиба. Однослойные трубы и трубы с полимерным барьерным слоем форму не держат, и это создает определенные трудности при монтаже.

Стоит обратить внимание, что в низкотемпературных системах используются гибкие трубы, т.к. по сути, эти системы представляют собой теплообменные змеевики. Поэтому жесткие кислородонепроницаемые полипропиленовые трубы PPR-Al-PPR в низкотемпературных системах не применяются. Трубы выполнение в размерном ряду SDR-6 абсолютно не сгибаемы, трубы размерного ряда по ГОСТ Р 53603-2009 трудносгибаемы. Кстати, переход европейских стран на энергосберегающие низкотемпературные системы отопления и кондиционирования сильно сократил в последние годы потребление полипропиленовых труб в Европе. ( Подробнее. )

ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ ПОЛИМЕРНЫХ ТРУБ

На рынке бытует мнение, что двигателем развития полимерных труб является многоэтажное строительство, однако это не совсем верно. в 2011 году 43% всего нового жилищного строительства РФ составляло малоэтажное строительство, в южных регионах доля малоэтажного строительства превышала 70%. По прогнозам Министерства регионального развития в 2020 году доля малоэтажного строительства превысит 80% всего жилищного строительства. Объем потребления труб малого диаметра (до 110 мм.) в 2020 году превысит 1,3 млрд. метров. (Подробнее. )

Безусловно, кроме технических характеристик перспективность той или иной трубопроводной системы определяется размерами сегментов ее применения. Оценим размеры сегментов на примере строительства типичного коттеджного поселка, Рис.6, 7.

Рис.6. Коттеджный поселок с площадью строений 45 338 кв.м.

Рис.7. Структура протяженности полимерных трубопроводов по назначению в типичном коттеджном поселке

Вышеприведенный рисунок наглядно демонстрирует значимость выбора трубопроводной системы с учетом кислородопроницаемости. 78% полимерных труб в малоэтажном строительстве должны обладать низкой диффузией кислорода. Причем, 50% это гибкие кислородонепроницаемые трубы типа PERT-Al-PERT, 28% кислородонепроницаемые трубы типа PERT-Al-PERT или PPR-Al-PPR OXY Plus, и только 22% трубопроводной системы может быть выполнена или однослойными трубами (PEX, PPR) или полипропиленовыми трубами армированными стекловолокном (PPR-FG-PPR, PPR-GF).

Перераспределение жилищного строительства в пользу малоэтажного строительства переносит проблему энергосбережения из государственной в личную, и поэтому переход на энергоэффективные системы отопления и кондиционирования мы, потребители, будем осуществлять сами. А необходимость этого вполне понятна. Традиционные системы радиаторного отопления неэффективны.

Опыт Европейских стран уже давно осуществляющих переход на энергосберегающие системы показателен, жилые здания в странах со схожими с Россией климатическими условиями потребляют тепла более чем 2 раза меньше чем российские, Рис. 8.

. Рис.8. Потребление тепла жилыми зданиями в странах со сравнивыми климатическими условиями

Для российских потребителей энергосбережение то-же становится крайне актуальн ой проблемой. Согласно официального прогноза Министерства экономического развития РФ на 2012 -2030 г.г. цены на газ в 2020 году вырастут более чем в полтора раза по сравнению с нынешним 2012, а к 2030 году почти в два раза. Электроэнергия подоражает в 2,1 раза в 2020 г. и в 2,78 раза в 2030 г. по сравнению с 2012, Рис. 9.

Рис.9. Рост цен на электроэнергию и газ, в % к 2012 г.

Это можно считать оптимистичным прогнозом. В действительности, вероятно, рост будет значительно выше — обычно министерства занижают неудобные данные.

Энергосбережение может кардинально изменить рынок полимерных труб для систем водоснабжения и отопления. Например, структура применения полимерных труб в вышеприведенном коттеджном поселке, оснащенном энергоэффективными системами напольного отопления и кондиционирования, системами использования геотермального тепла (тепловыми насосами) существенно меняется, Рис.10.

Рис.10. Структура протяженности полимерных трубопроводов по назначению в коттеджном поселке оснащенном энергоэффективными системами панельного отопления и кондиционирования, и системами использования геотермального тепла

Переход на энергосберегающие системы снизит затраты на содержание жилых домов, но обернется для потребителей увеличением первоначальных затрат на строительство. Это в свою очередь, сделает процесс выбора трубопроводной системы более вдумчивым. Для того, что бы подорожавшая система отопления и водоснабжения не стала постоянной головной болью при выборе труб будет необходимо учитывать все факторы влияющие на надежность системы: термостойкость, термостабильность, кислородопроницаемость, и разумеется, репутацию производителя.

Диффузия кислорода в полимерных трубах

В.В. Крикотин, генеральный директор,
М.А. Попов, директор по развитию,
ООО «Экструзионные машины», г. Дубна

(публикуется в сокращении)

В последнее время разработчики полимерных трубопроводов увлеклись снижением температурного удлинения труб, и как-то начали забывать про второй важный параметр полимерных труб — диффузию кислорода (кислородопроницаемость). А между тем, по своей значимости кислородопроницаемость полимерных труб показатель, пожалуй, более важный, чем температурная стабильность. Влияние температурного расширения, в конце концов, можно уменьшить с помощью компенсаторов (это, правда, приводит к удорожанию трубопроводной системы), но устранить диффузию кислорода кроме как изменением конструкции самой трубы невозможно.

Потребители, практически, не имеют возможности получить данные о кислородопроницаемости. Кроме производителей абсолютно кислородонепроницаемых металлополимерных (металлопластиковых) труб мало кто представляет данные о диффузии кислорода. Мы восполним этот пробел (табл., рис. 1) и покажем негативные последствия кислородопроницае- мости для трубопроводных систем.

Как видно из таблицы и рис.1, все однослойные трубы имеют самую высокую степень кислородопроницаемости.

Таблица. Характеристики трубопроводных систем.

Абсолютной кислородонепроницаемостью обладают только металлополимерные трубы PERT-Al-PERT, PPR-Al-PPR.

В многослойных трубах с барьерным слоем из этиленвинилового спирта PEX-EVON-PE показатель диффузии кислорода имеет сравнительно невысокое значение, но показатель температурного расширения соответствует однослойным трубам.

В настоящий момент только многослойные трубы PERT-Al-PERT и PEX-EVON-PE соответствуют ГОСТ Р 53603-2009 «Трубы напорные многослойные для систем водоснабжения и отопления».

Модная новинка — полипропиленовые трубы армированные стекловолокном PPR/PPRFG/PPR приблизились по показателю температурного расширения к металлопластиковым трубам, но высокая кислородопроницаемость делает их непригодными для систем отопления, тем самым крайне сужается сегмент их потребления.

Теперь, разобравшись с показателями кислородопроницаемости наиболее популярных полимерных трубопроводов систем отопления и водоснабжения, обратимся к негативным последствиям для замкнутых систем отопления, которые порождает высокая диффузия кислорода.

Влияние диффузии кислорода в полимерных трубах на замкнутую высокотемпературную систему (радиаторное отопление) хорошо известно. Проникающий через стенки трубы кислород насыщает разогретый до высокой температуры теплоноситель пузырьками кислорода, порождая кавитационные процессы в насосах (рис. 2), вентилях (рис. 3), во всех других металлических элементах трубопроводной системы.

Процессы кавитации несколько усиливаются образованием слабых кислот в теплоносителе в результате повышения концентрации того же кислорода.

Высокая кислородопроницаемость полимерных труб может привести к разрушению металлических узлов в довольно короткие сроки: 3-5 лет.

Благодаря достижениям производителей полимеров современные полимерные трубы обрели высокую долговечность (50-100 лет), но применение полимерных труб с высокой диффузией кислорода в высокотемпературных системах отопления сокращает срок службы трубопроводной системы в целом в несколько раз.

Выводы

Трубы с высокой диффузией кислорода, применение которых недопустимо в высокотемпературных замкнутых системах отопления:

■ PEX (однослойные трубы из сшитого полиэтилена).

■ PPR (однослойные трубы из полипропилена).

■ PPR-FG-PPR (полипропиленовые трубы армированные стекловолокном).

Тепло, вода и полимерные трубы

Сантехнический мир в деталях

Подписаться на этот блог

Follow by Email

Поиск по этому блогу

Как победить кислородную диффузию

Насыщенная газами система отопления работает плохо. Долговечность ее элементов резко уменьшается. При наличии воздуха в воде появляются процессы коррозии, кавитации. Могут образовываться шумы и воздушные пробки. Это затрудняет циркуляцию носителя тепла.

Рис.1. Слева и в центре — последствия от процесса коррозии, справа — от кавитации

Рис. 2. 1 — кран Маевского; 2 — автоматический воздухоотводчик; 3 — деаэратор

Рис. 3. Различные типы полимерных труб: 1 — PEX; 2 — PPR; 3- PERT; 4 — PVC

Рис.4. Полипропиленовые трубы. Слева — армированная цельным слоем алюминия. Справа — с перфорированным

  • Получить ссылку
  • Facebook
  • Twitter
  • Pinterest
  • Электронная почта
  • Другие приложения

Ярлыки

  • Получить ссылку
  • Facebook
  • Twitter
  • Pinterest
  • Электронная почта
  • Другие приложения

Комментарии

Отправка комментария

Популярные сообщения из этого блога

Маркировка шаровых кранов

  • Получить ссылку
  • Facebook
  • Twitter
  • Pinterest
  • Электронная почта
  • Другие приложения

В первую очередь «теплый пол» у нас ассоциируется с трубами, подложкой и коллекторами. О насосно-смесительных узлах вспоминают не всегда. Кто-то из-за непонимания как настроить, куда поставить, и главное зачем? Кто-то из-за дороговизны. А ведь этот узел – основа панельного обогрева. Давайте посмотрим на варианты узлов, которые есть на рынке Украины. А вот здесь видео-обзор производителей — Youtube.Build your life

Функциональность
Отопление в полу – это вид низкотемпературной системы. По ряду причин, в трубопроводы теплоноситель необходимо подавать с температурой ниже 55°С. В нашей стране «теплый полы» зачастую комбинируются с радиаторным отоплением. Последнее работает с теплоносителем с высокой температурой (выше 55°С). Именно здесь и находит себе применение насосно-смесительный узел (НСУ). Он производит снижение температуры теплоносителя до расчетного значения для напольного отопления. Путем смешивания двух потоков – горячего (от основной магистрали системы отопления) и охлажденного (ч…

  • Получить ссылку
  • Facebook
  • Twitter
  • Pinterest
  • Электронная почта
  • Другие приложения

Фольга под теплый пол. Нужна или нет?

Каждый человек, кто сталкивался с темой теплых полов, знает, что его надо «утеплять». В качестве теплоизоляции зачастую используют пенополистирол с фольгой. И вот вопрос, зачем она нужна? И нужна ли вообще?

Сразу же хочу развеять один миф, что фольга отражает тепло. И оно распределяется только в нужном обогреваемом помещении. Это неправда!
Поясню. В отоплении существует 3 основных вида теплопередачи – конвекция, теплопроводность и излучение. Последний способ может работать только лишь в прозрачной среде. А так как между фольгой и бетоном нет прослойки воздуха, то отражать (излучать) тепло она не может.
Но вот отдавать тепло за счет теплопроводности – да. Так как коэффициент теплопроводности у бетона намного ниже, чем у алюминиевой фольги, то последняя способствует быстрому прогреву и равномерному распределению тепла по площади помещения. Чтобы достигнуть такого эффекта, необходимо применять алюминиевую фольгу толщиной более 50 мкм.
Но с большей доли вероятности такая пленка не сможет …

  • Получить ссылку
  • Facebook
  • Twitter
  • Pinterest
  • Электронная почта
  • Другие приложения

Маркировка пластиковых труб. Трубы на основе полиэтилена

Полимеры быстро вошли в нашу жизнь. В любой области жизни Вы найдете множество изделий из пластика. Инженерные системы не есть исключением. Для систем отопления и водоснабжения выпускается много разновидностей пластиковых труб, фитингов и других продуктов.
Одной большой категорией есть трубы на основе полиэтилена для отопления. На рынке присутствует много производителей, брендов и типов. Для многих людей трудно разобраться кто же лучше и какая между ними разница. Одним из простых способов – это прочитать что на них написано. Ранее я уже писал о маркировке шаровых кранов и полипропиленовыхфитингов. В этой статье я покажу Вам что означает маркировка труб на основе полиэтилена.

Все надписи на трубах PEX, PERTили металлопластиковых можно разделить на категории. Здесь все ясно. Основных больше десяти. Итак, начнем.
1. Название производителя/бренда Здесь все ясно. Зачастую название выделяют более жирным шрифтом или наносят логотипы. Иногда просто отделяют знаками (см. рис.2).

Кислородонепроницаемость пластиковых труб

Кислородопроницаемость или диффузия кислорода — важный параметр в общей характеристике пластиковых труб. Многие полимерные трубы имеют высокие значения диффузии кислорода, что негативно сказывается на процессах эксплуатации, сокращая сроки работы не столько самих труб, сколько всех металлических узлов и приборов трубопроводной магистрали.

Например, если для создания отопительной системы используются трубы с высокой кислородопроницаемостью, то кислород проникает сквозь стенки трубопровода и насыщает горячий теплоноситель. Рабочая среда с пузырьками кислорода, проходит через металлические элементы трубопровода и способствует развитию в них кавитационных процессов, усиливающих образование слабых кислот. При высокой кислородной проницаемости полимерных трубопроводов наблюдается быстрое разрушение металлических деталей, которые в этом случае смогут прослужить не более 3-5 лет, а замена их несет за собой финансовые затраты.

Нормы кислородонепроницаемости

В соответствии с требованиями СНиП 41-01-2003 при монтаже систем отопления нельзя использовать полимерные трубы без антидиффузионного слоя, который предотвращает проникновение внутрь кислорода.

Согласно нормативному документу DIN 4726, показатель кислородной герметичности не может быть ниже, чем 0,1 г/м3 в сутки. Газ, проникающий в отопительную сеть на участках трубопровода без антидиффузионного слоя, попадает в теплоноситель и при контакте с металлическими узлами приводит к образованию ржавчины. В результате этого ускоряется износ металлического оборудования (элементов насоса, радиаторов и т.д.).

Антидиффузионный слой исключает попадание кислорода из воздуха в воду, которая в большинстве случаев используется в качестве теплоносителя.

Подтверждение параметра кислородонепроницаемости

Специалисты спорят о достоверности параметра диффузии кислорода, а некоторые намекают на невозможность проверки данного параметра имеющимися средствами лабораторных испытаний. Однако, все весьма прозрачно.

Существует стандарт ИСО 17455, который является международным. Он называется: «Трубопроводы из пластмасс – Многослойные трубы – Определение кислородопроницаемости трубы с барьерным слоем», в котором описываются два способа – статический способ проверки на кислородонепроницаемость, а также динамический способ. Данными образом определяется сколько кислорода попадает в рабочую среду в определенное время и при определенной температуре. Выбор метода не принципиален, поскольку результаты показываются одинаковые.

Высоко и низкотемпературные системы замкнутого типа

Ещё не так давно полагали, что кислородная диффузия оказывает негативное влияние в сетях только с высокими рабочими температурами. Однако шведские учёные после многолетних испытаний установили, что кислород, проникая в теплоноситель низкотемпературной коммуникации, способствует развитию бактерий, продукты жизнедеятельности которых заиливают внутренние поверхности трубопровода. В результате снижается пропускная способность и система становиться непригодной для дальнейшей эксплуатации. Итог – замена всей системы и серьезные финансовые затраты.

Как показывает практика, в России для монтажа систем отопления используются самые разные трубы и комплектующие к ним. Но создать по-настоящему надёжную систему можно только с помощью труб, характеризующихся кислородной непроницаемостью и термической стабильностью. Всем этим требованиям отвечают трубопроводные системы «aquatherm».

Что касается ПП труб с армированным внешним слоем из алюминиевой фольги, то они не подходят для устройства данных систем в виду плохой адгезии фольги и полипропилена. Это негативно сказывается на термической стабильности и грозит преждевременным расслоением. Если армированный слой создан из дырчатой фольги, то это чревато проникновением кислорода в теплоноситель.

Кислородная коррозия: особенности

Как кислород из окружающего воздуха при давлении 0 атм. проникает в отопительную систему, в которой поддерживается давление 1,5 атм. и больше? В этом случае имеется ввиду парциальное давление, которое не зависит от абсолютного. Проникновение газа через поверхность труб без антидиффузного слоя будет происходить в том случае, если давление кислорода, который растворён в теплоносителе, будет ниже, чем во внешней среде.

Согласно действующим нормативам, концентрация кислорода в подпиточной воде теплосетей ограничивается 50 мкг/л. В неочищенной воде содержание кислорода в 100 раз больше. Даже небольшой переизбыток газа (сверх нормы) грозит развитием коррозионных процессов на металлических поверхностях. Постоянное насыщение воды кислородом обеспечивает непрерывные процессы коррозии, способные привести к появлению дыр. Кислород попадает в теплоноситель через трубы с высокой кислородопроницаемостью и во время подпитки сети неподготовленной водой.

Другой вариант, если теплосеть изготовлена из труб с низкой кислородопроницаемостью, а для подпитки используется подготовленная вода. В этом случае концентрация газа, растворённого в ней, постепенно уменьшается, при этом наблюдается частичное «недоокисление» и на поверхности внутренних стенок появляется плёнка, представляющая собой магнитный железняк и защищающая трубы от коррозии.

Производство труб с низкой диффузией кислорода

К сожалению, многие производители полимерных труб больше внимания уделяют снижению теплового удлинения изделий и при этом забывают о таком важном параметре, как кислородопроницаемость. Ведь минимизировать тепловое расширение можно благодаря использованию компенсаторов, а предотвратить диффузию кислорода можно лишь за счёт конструктивных изменений при изготовлении трубопроводных изделий.

Компания «aquatherm GmbH» на протяжении 40 лет занимается изготовлением трубопроводной продукции из модифицированного полипропилена. Данный материал является собственной разработкой и запатентован под торговой маркой «Fusiolen». В отличие от многих других полимеров, он обладает однородной структурой и низкой кислородопроницаемостью, поэтому идеально подходит для производства систем отопления. Трубы «aquatherm» соответствуют всем действующим СНиП и DIN.

Преимущества использования труб с низкой кислородной проницаемостью

При разработке проектной документации на отопительные сети и другие трубопроводы важно учесть не только первоначальную стоимость, но и эксплуатационное обслуживание, которое при неправильном выборе труб может оказаться скорым и затратным, вплоть до полной замены системы. Конечно, создать вечную коммуникацию не удастся, но при правильном выборе труб можно продлить эксплуатационный период с 5-ти до 50-ти лет.

Нужен ли кислородный барьер в трубах?

Если вы попали на данную страницу, то можно утверждать, что скепсис по отношению использования кислородного барьера в трубах для систем отопления так же не обошел вас стороной. Тема действительно вызывает множество споров в виду переоцененности данной опции в трубах. Как вы понимаете, трубы с диффузионным барьером и стоят дороже. Поэтому давайте разбираться, нужна ли нам эта опция или нет.

Что такое кислородный барьер?

Кислородный барьер (он же и диффузионный) – это специальное покрытие, используемое в трубах из термопластовых материалов, препятствующих попаданию кислорода внутрь трубы и в дальнейшем в систему отопления. В ППР трубах этой слой представлен в виде стекловолокна или же алюминиевой фольги, в металлопластиковых трубах используется так же фольга. Трубы же из сшитого полиэтилена используют тонкий слой из этиленвинилового спирта. Такие трубы маркируются как EVOH.

Для чего нужен диффузионный барьер?

Есть ли необходимость в кислородном барьере? По заявлению производителей, при попадании кислорода в систему, он стремится сразу вступить в реакцию с чем-либо. Первое, что он видит на своем пути – это металлы. Вступая в реакцию, в системе начинает скапливаться шлам и происходит образование магнетитов. Все это негативно сказывается на работе системы отопления и сроке службы оборудования. Какие еще есть факты?

  1. Даже при наличии воздухоотводчика, он не способен в полной мере избавить систему отопления от воздушных взвесей
  2. Сетчатые фильтры так же далеко не весь шлам способны сдерживать. Поэтому он все равно присутствует в системе отопления
  3. Магнетиты имеют свойства магнитов и с радостью оседают на металлических соединениях

Довольно хорошо свои доводы привел Александр Макеев в своем видео. Посмотрите его ниже:

Что произойдет, если я смонтирую отопление трубой без барьера?

У нас был такой опыт монтажа. Производитель, у которого мы закупали трубы, решил заработать деньги и начал поставлять трубы без барьера. Такими трубами мы смонтировали два объекта, пока не увидели проблему.

Прошло 4 года и объекты по сей день работают без проблем. Но возможно это довольно малый срок.Так же не удалось отыскать конкретных случаев, где бы показывалось наглядно, какие последствия бывают при отсутствии кислородного барьера в трубах.

Важно понимать, не факт, что проблемы такой не существует. Поэтому смотрим следующие доводы ниже

СНиП с требованием о наличии кислородного барьера

Существует СНиП, связанный с отоплением, вентиляцией и кондиционированием. В нем ясно говорится, что системы отопления, в которых есть полимерные трубы и металлические элементы, должны иметь диффузионный барьер (он же и кислородный).

Приводим подробную выдержку:

Что говорят производители?

Тут ситуация весьма интересная. Если барьер у вас будет отсутствовать, то у многих производителей это является отличным поводом для снятия оборудования с гарантии. И это, пожалуй, самый весомый аргумент для использования труб с кислородным барьером.

Вот что пишут Vogel & Noot (стальные панельные радиаторы)

А вот паспорт на котел Viessmann Vitopend

Кислородопроницаемость. Миф или факт?

Есть множество мастеров, которые считают, что диффузионный барьер – это развод чистой воды. И вот какие аргументы приводятся:

  1. Давление в трубе выше атмосферного давления. Поэтому попадание кислорода внутрь исключено по всем законам физики
  2. Даже если кислород и попадает, то это настолько мизерное количество, которое никак не скажется на работоспособности системы. А лишнее воздухоотводчик всегда сбросит.
  3. Появление коррозии так же преувеличено. В любом случае невозможно наверняка избавиться от кислорода в системе. Поэтому естественные процессы коррозии неизбежны.
  4. Все это простой маркетинг, призванный раздуть проблему из ничего для того, чтобы создать дополнительный спрос.

Но на самом деле кислородный барьер в трубах действительно значительно снижает попадание кислорода в систему отопления. Есть множество испытаний и их результат вы можете без проблем найти в сети.

Так же в данном случае за попадание кислорода внутрь отвечают законы парциального давления. А они отличаются от других законов. В пример обычно приводят корзину с фруктами, погруженную в воду. Как бы фрукты не давили на стенку корзины, вода все равно попадает внутрь. То же самое и с кислородом.

В сухом остатке

Можно много спорить об этой теме. Но важно одно — раз есть требования, то их нужно соблюдать. И не важно, раздутая эта проблема или нет. «Протолкнули» данные нормы или нет и так далее. Важно, что в случае чего, попасть вы можете на хорошие деньги. Зачем нужен такой риск?

А каким будет ваше мнение? Ждем ответа в комментариях!

Автор: Андрей Елфимов

4 комментария

Считаю эту «проблему сильно надуманной». Скорее это заговор с целью поднять стоимость. В Корее и Японии кислородным барьером не заморачиваются а гарантию на собранную систему дают те же 50 л ет. Вот из Вики про парциальное давление :» Газы всегда будут вытекать из области с высоким парциальным давлением в область с более низким давлением; и чем больше разница, тем быстрее будет поток.» Всем понятно что в трубе давление больше. Парень в ролике так же не очень убедителен, ссылается на опыт…… я когда не знаю как ответить клиенту на каверзный вопрос говорю — » по опыту» К тому же на что будет действовать кислород? На нержавеющий вентиль шарового крана? На бронзу фитингов? На алюминий Радиаторов? На металлах образуются окислы которые препятствуют дальнейшему окислению и это известно всем. И еще, по логике сторонников теории проникновения кислорода снаружи трубы , кислород проникая внутрь становится жутко агрессивным…..почему? Находясь снаружи трубы он не оставлял следов своего воздействия а вот проникнув внутрь становится вдруг страшно агрессивным. Где мои рассуждения неверны, поправляйте.

Для чего тебя поправлять? Твое не знание предмета ни как не скажется на физике процесса до тех пор, пока ты не сам не отработаешь этот вопрос со всеми вытекающими. Но после этого ты уже ни как не захочешь делиться этим знанием, лишь будешь соглашаться или опровергать без доказательств. С невеждой проще не вступать в диалог, чем доказывать что он ничего не знает. А мнение у нас имеет каждый. Даже человек с гор, который кроме своего аула ничего не знает.

На мой взгляд этой чистой воды обдираловка. Я не знаю как Вы но я монтирую отопление из полипропилена с 2004 г. А это как никак 15 лет уже. И пока никаких проблем не было.

а если трубы залиты в бетонную стяжку, то проникновение кислорода через стяжку, тем более обработанную аквастопом или жидким стеклом, вообще исключено.

Пластиковые и металлические трубопроводы: кислородопроницаемость

На первый взгляд может показаться, что металлические трубопроводы обеспечивают значительно лучшую герметичность, чем пластиковые, однако такая оценка слишком упрощённая и не учитывает нескольких важных факторов, в том числе особенности монтажа металлических и полимерных труб и трубопроводной арматуры. Именно об этом мы и будем говорить в данной части. А начнём с кислоропроницаемости интересующих нас материалов.

Этот показатель особенно важен для металлических трубопроводов, однако и при использовании пластиковых систем им нельзя пренебрегать, но по иным причинам. Металлы достаточно устойчивы к проникновению кислорода и потому металлические трубы и сами по себе являются хорошим антидиффузным барьером. Однако многое зависит от качества исполнения стыков металлических труб, поскольку чаще всего они куда менее герметичны, чем у полимерных. А при попадании молекул кислорода внутрь трубопроводной системы начинается коррозия внутренних стенок, что не менее опасно для целостности труб и фитингов, а ещё значительно ухудшает качество транспортируемой среды. Последний фактор, может, и не так важен, например, для систем отопления или горячего водоснабжения, однако срок службы стальных труб всё равно будет небольшим, и их придётся заменить уже через 2-3 года после начала коррозионных процессов, так как они протекают достаточно быстро.

Что касается меди, то находящийся внутри газ также не лучшим образом влияет на целостность медных труб, постепенно разрушая их, и потому при монтаже медных трубопроводов требуется обращать особое внимание на герметичность стыков. Внешняя же коррозия для медных труб не так опасна, как, например, для стальных, поскольку образующиеся оксидные плёнки создают естественную и надёжную защиту от углубления коррозионных образований внутрь труб. Относительно же чугуна нужно заметить, что сам материал обладает худшей кислоронепроницаемостью, чем сталь, но коррозия в чугунных трубах развивается значительно медленнее, чем в стальных. Тем не менее чугун используют в тех же отопительных системах крайне редко, поскольку этот материал недостаточно прочный для такого применения и может легко треснуть под нагрузкой. Впрочем, по кислородопроницаемости к чугуну вопросов нет — опять же, за исключением стыков чугунных труб.

Ну, а если говорить о полимерах, то для отопления и горячего водоснабжения рекомендуется использовать только армированные полимерные трубы, и желательно алюминиевой фольгой (алюминий, как почти любой металл, хорошо задерживает молекулы кислорода). Но делать это нужно не только из-за низкой устойчивости полимеров к проникновению кислорода, а и потому, что неармированный пластик имеет слишком большой коэффициент теплового расширения, что может привести к разрыву пластика в проблемных местах и протечкам, а этого в системе отопления допускать нельзя. Армированные же трубы удлиняются значительно меньше и кроме того, они надёжно защищают систему от завоздушивания, а значит, трубы будут нагреваться равномерно и не будут испытывать механических перегрузок. Кроме того, стоит отметить, что армированные пластиковые трубы (как полиэтиленовые (из сшитого полиэтилена PEX), так и полипропиленовые — армированные PP-R или PP-RCT) почти не уступают в герметичности металлическим, а вот по стоимости выгоднее последних. Таким образом, использование полимерных труб оказывается более выгодным и в данном случае, а при правильном монтаже они будут ещё и абсолютно герметичны в местах стыков.

Admin
Оцените автора
Строительный портал
Добавить комментарий

1 × 3 =

Для вашего удобства сайт использует cookie для хранения данных. Продолжая использовать сайт, Вы даете свое согласие на работу с этими файлами
Принять
Политика конфиденциальности
Adblock
detector