Принципы армирования железобетонных конструкций

Содержание

Принципы армирования железобетонных конструкций

Армирование железобетонных конструкций

Бетон имеет существенный недостаток, присущий всем каменным материалам искусственного и естественного происхождения: он хорошо работает на сжатие, но плохо сопротивляется изгибу и растяжению. Прочность бетона на растяжение составляет всего 7… 10% его прочности на сжатие. Чтобы повысить прочность бетона на растяжение и изгиб, в него укладывают стальную проволоку или стержни, называемые арматурой. Арматура с латинского означает «вооружение». Бетон, вооруженный арматурой, способен на многое.

Цемент изобрели в 1824 – 1825 гг. практически одновременно, независимо друг от друга Егор Челиев в России и Джозеф Аспдин в Англии. Производство цемента и использование бетона быстро совершенствовалось и развивалось, но оставался существенный недостаток – плохое сопротивление бетона растяжению.

Открытие железобетона принадлежит парижскому садовнику Иосифу Монье, который решил вместо деревянных кадок для цветов сделать бетонные. Для прочности он уложил в бетон проволоку. Получились очень долговечные изделия. Так появился железобетон (патент от 1867 г.), в котором бетон и сталь дополнли друг друга. Металл предотвращал появление трещин при растяжении, а бетон защищал сталь от коррозии. Попытки создать железобетон предпринимались и раньше (1845 – В. Уилкинсон, Англия; 1849 – Г.Е. Паукер, Россия). Первые железобетонные конструкции появились в 1885 г.

Железобетон – это не два разнородных материала (бетон и сталь), а новый материал, в котором сталь и бетон работают совместно, помогая друг другу. Это объясняется следующими причинами.

Прочность сцепления арматуры с бетоном достаточно велика. Так, чтобы выдернуть из бетона пруток диаметром 12 мм, введенный на глубину 300 мм, потребуется сила не менее 400 кг. Сцепление стали с бетоном не нарушается и при сильных перепадах температур, так как коэффициенты их теплового расширения почти одинаковы.

Модуль упругости стали почти в 10 раз выше, чем бетона. То есть при совместной работе бетона со сталью напряжения стали в 10 раз выше, чем бетона, что ведет к перераспределению нагрузок, действующих в растянутой зоне балок. Основную нагрузку в растянутой зоне балки несет сталь, а в сжатой – бетон.

Бетон, благодаря своей плотности и водонепроницаемости, с одной стороны, и щелочной реакции цементного камня, с другой, защищает сталь от коррозии (пассивирование).

Кроме того, бетон, как сравнительно плохой проводник тепла, защищает сталь от сильного нагревания при пожарах. При температуре поверхности бетона в 1000°С арматура, находящаяся на глубине 50 мм, через 2 часа нагреется лишь до 500°С.

При работе железобетонной конструкции на изгиб на предельных значениях нагрузки в растянутой зоне бетона могут возникнуть трещины толщиной менее 0,1…0,2 мм (так называемые волосяные трещины), которые не опасны с точки зрения сцепления арматуры с бетоном и коррозии металла.

Для того чтобы арматура быстрее включалась в работу бетона, её выпускают с рельефной поверхностью, снабжая насечками различной конфигурации. Железобетонная конструкция будет работать лучше, если основные силовые прутки арматурного каркаса будут соединены в единую сварную конструкцию с поперечными связями.

Цель армирования можно пояснить на железобетонных изделиях, работающих на изгиб, которые достаточно широко применяются в строительной практике. Балки над проемами окон и дверей, железобетонные панели и плиты перекрытия, балки и ригеля мостов и цеховых построек можно отнести к этой категории строительных изделий.

«Сопромат» – сопротивление материалов – наука о прочности конструкций. Любая конструкция, на которую действуют силы, испытывает внутренние напряжения, соответствующие величине и направлению действия этих сил. Задача проектировщиков – создать такую конструкцию, в которой уровень внутренних напряжений не будет выше тех, которые способны выдержать используемые материалы, а деформации конструкции не превысят допустимую величину.

Если взять бетонную балку, загруженную какими-либо силами, например, распределенной нагрузкой (q) (Рисунок 114, а), то в ней одновременно действуют напряжения двух видов: нормальные (а) и сдвиговые (т). Следует заметить, что величина этих напряжений меняется не только по длине балки, но и по высоте её поперечного сечения.

Но длине балки, в каждом её поперечном сечении, напряженное состояние от воздействия внешних нагрузок может быть приравнено к одновременному действию двух нагружений – изгибающего момента (М изг) и перерезывающей силы (Q), величина которых в каждом сечении балки рассчитывается по определенным формулам «сопромата».

Наибольшая величина изгибающего момента будет в середине балки. К концам она будет уменьшаться до нуля. Графическое изображение такого изменения называется эпюрой изгибающих моментов М изг (Рисунок 114, в).

Эпюра перерезывающих сил Q (Рисунок 114, г) показывает, что наибольшая их величина приходится как раз на опоры, на которые опирается балка.


Рисунок 114. Балка под нагрузкой «Р» и напряжения в ней:
А – неармированная балка; Б – армированная балка; В – эпюра изгибающих моментов; Г – эпюра перерезывающих сил;
1 – бетонная балка; 2 – арматура; 3 – трещина от изгиба балки; 4 – трещина от перерезывающей силы; 5 – напряжения сжатия; 6 – напряжения растяжения

Что же происходит с такой балкой?

От действия изгибающего момента в ней возникают нормальные напряжения (сжатие-растяжение), которые по высоте сечения меняются от наибольшего сжатия -вверху до наибольшего растяжения внизу. В нейтральной средней зоне поперечного сечения нормальные напряжения – нулевые. Наибольшие напряжения от изгибающего момента будут в середине пролета. Если бетон «не вооружен» арматурой, то внизу, в зоне действия растягивающих напряжений, могут возникнуть трещины (Рисунок 114, а).

В зоне действия максимальных перерезывающих сил возникают наибольшие касательные напряжения. Обращаем внимание любителей «сопромата» на то, что касательные напряжения создают в теле балки напряженное состояние, которое характеризуется одновременным действием нормальных напряжений сжатия и растяжения, ориентированных к горизонтали под углом в 45°. Растягивающая составляющая напряжений в зоне опор может спровоцировать появление наклонных трещин (Рисунок 114, а).

Армирование балки стальными прутками, усиливающими бетонный массив в зоне наибольших растягивающих напряжений в середине пролета и около опор, позволяет создать жесткую и прочную железобетонную конструкцию (Рисунок 114, б).

Растягивающие напряжения в балках около опор могут быть причиной возникновения наклонных трещин только при относительно большом расстоянии между опорами и малой толщине балки (плиты перекрытий, длинные надоконные перемычки, балки или ригеля мостов и т.п.). Поэтому при армировании лент фундамента или стен дома наклонные отгибы арматуры в зоне опор можно не выполнять.

Где лучше располагать арматуру

Наибольшая эффективность арматуры при изгибающих нагрузках создается при её расположении в зоне максимальных деформаций от растягивающих напряжений, как можно ближе к краю. Но бетон должен защищать арматуру от коррозии, да и обжатие арматуры бетоном должно быть полноценным со всех сторон. Поэтому арматуру располагают в массиве бетона не ближе 3…5 см от поверхности железобетонного изделия, притом чем плотнее бетон, тем меньше может быть это расстояние.

Использование прутков повышенной прочности в качестве арматуры полностью не реализует их потенциальные возможности. При полном их нагружении растяжением в массиве бетона возникают относительно широкие трещины, снижающие коррозийностойкость арматуры. Для повышения эффективности ее работы процесс бетонирования и созревания бетона происходит при натянутой арматуре. Таким образом создается напряженный бетон, находящийся в сжатом состоянии и при отсутствии нагрузок.

Применение метода предварительного натяжения позволяет повысить эффективность работы арматуры и всей железобетонной конструкции. В толще бетона натянутая арматура создает напряжения сжатия, которые после сложения с напряжениями изгиба, действующими на конструкцию, образуют относительно небольшую составляющую напряжений растяжения (Рисунок 115, а).


Рисунок 115. Примеры напряженного бетона:
А – балка; Б – Останкинская телебашня;
1 – бетонное основание телебашни;
2 – трос натяжения; 3 – напряжение от веса;
4 – напряжение от натяжения троса;
5 – напряжения от изгиба;
6 – суммарное напряжение в поперечном сечении;
7 – бетон; 8 – форма;
9 – арматура в растянутом состоянии;
10 – железобетонная балка под нагрузкой

Останкинская телебашня в Москве построена в начале 70-х годов прошлого века. Тонкой иглой башня пронизывает московское небо, поражая воображение. Невольно задаешься вопросом: как такая тонкая конструкция выдерживает ветровую нагрузку? Основная часть телебашни выполнена в виде трубы переменного сечения, отлитой из высокопрочного железобетона. Внутри трубы натянуты мощные троса, нагружающие массив бетона сжатием и исключающие появление растягивающих напряжений в бетоне при изгибе башни от ветровых нагрузок (Рисунок 115, б). За натяжением тросов специалисты ведут тщательное наблюдение.

В предварительно напряженных железобетонных конструкциях более полно используются прочность стали и бетона, поэтому уменьшается масса изделий. Кроме того, предварительное обжатие бетона, препятствуя образованию трещин, повышает его долговечность. Железнодорожные шпалы, сделанные по такой технологии, обладают весьма высоким ресурсом при эксплуатации в самых суровых климатических условиях.

Прутки арматуры и сварные арматурные сетки используются в производстве железобетонных изделий на заводах ЖБИ и при бетонировании, выполняемом непосредственно на строительной площадке (устройство фундамента, армирование стен, создание бетонных перекрытий и надоконных перемычек, бетонирование дорог и устройство отмостки…).

В зависимости от механических свойств и технологии изготовления арматура делится на классы и обозначается следующими буквами:
А – стержневая арматура;
В – проволока;
К – канаты.

Для обеспечения максимальной экономии целесообразно применять арматуру с наиболее высокими механическими свойствами.

Индустриализация арматурных работ успешно решается за счет широкого применения сварных сеток, плоских и объемных сварных каркасов.

Металлургическая промышленность выпускает прутки арматуры диаметром от 5,5 до 40 мм. Следует учитывать, что применение арматуры большого диаметра (больше 12 мм) в условиях индивидуального строительства нельзя считать оправданным. Большие поперечные сечения арматуры используются при больших пролетах балок, которые встречаются лишь в индустриальном строительстве. Подобное ограничение связано с тем, что арматура в процессе работы бетонной конструкции загружается растягивающими напряжениями. Арматура больших сечений при небольших габаритах строений не успевает загрузиться в полной мере, из-за чего полноценной совместной работы бетона и арматуры не происходит. Оптимальный диаметр прутков в условиях индивидуального строительства – 6…12 мм (армирование фундамента и стен, создание сейсмопояса).

Планируя выполнить стык прутков арматуры, индивидуальные застройщики не всегда хотят связываться с проведением сварочных работ. Простой перехлест арматуры па длине больше 60 диаметров прутков – достаточное условие для их соединения. Например, при диаметре прутков 12 мм, перехлест прутков должен быть не менее 72 см. Если законцовки прутков загнуть, то длину перехлеста можно уменьшить в два-три раза.

Достаточно часто застройщики применяют для армирования бетонных конструкций тот металл, который у них есть, или тот, который им предлагают знакомые.

Да, металл сейчас дорогой и такой подход к подбору арматуры вполне понятен. Но в этом есть некоторые ограничения.

Что нельзя применять для армирования:
– алюминиевые прутки (низкий модуль упругости и отсутствие сцепления с бетоном);
– листовую полосовую сталь (провоцирует появление трещин в плоскости листового материала при относительно малой площади поперечного сечения, слабое сцепление металла с бетоном по плоскости);
– полосы листового материала с просечками – отходы штамповочного производства (совсем малое реальное поперечное сечение арматуры);
– сетка-рабица (обладая свойствами пружины, никак не может выполнять армирующую роль);
– трубы, оставшиеся после демонтажа газопроводов, систем водоснабжения или центрального отопления (в полости труб может скапливаться вода, которая при замерзании разрушит трубу и бетон);
– массивные профиля в виде уголков, швеллеров, двутавров или рельсов (большая площадь сечения и относительно слабое сцепление бетона с плоскими участками металла затрудняют включение металла в работу, мешают созданию единой структуры железобетона);
– прутки арматуры длиной меньше 1 м (не успевают включиться в работу).

Если арматура покрыта краской, жировыми или масляными пленками – все это необходимо снять, чтобы обеспечить хорошее сцепление металла с бетоном.

В последнее время в качестве арматуры в железобетонных конструкциях стали использовать изделия из стеклопластика и пластика с базальтовыми волокнами.

Арматурная сетка из стеклянных волокон, пропитанная битумом, используется для армирования асфальтобетонных покрытий и дорог, аэродромных покрытий, а также при проведении дорожных ремонтно-восстановительных работ. Выпускается по ТУ 2296-041-00204949-95. В технологии ТИСЭ применяется для армирования стен.

Лента выпускается в рулонах (75-80 м) шириной 1 м. Ячейка – 25x25 мм. Разрывная прочность – 4 тонны на метр ширины. Сетка удобна в транспортировке и в раскрое (режется обычными ножницами), не создает «мостков холода», не ржавеет, инертна к электромагнитному излучению.

Гибкие связи из базальтовых волокон – прутки диаметром 5…8 мм с загнутыми законцовками. Длина гибкой связи согласуется с изготовителем. Прочная и жесткая гибкая связь не подвержена коррозии, хорошо стоит в бетоне, не создает «мостка холода». В технологии ТИСЭ применяется при возведении трехслойных стен без «мостков холода».

Замена металлического армирования стен на неметаллическое дает возможность сохранить природный электромагнитный фон Земли и тем самым улучшить экологическую среду в доме.

Монолитные железобетонные конструкции: проектирование, правило армирования

Монолитные железобетонные конструкции были впервые применены в России в 1802 году. В качестве материала для армирования использовались металлические стержни. Первым строением, созданным с использованием данной технологии, стал Царскосельский дворец.

Монолитные железобетонные конструкции часто применяются при производстве таких изделий, как:

Железобетонные монолитные конструкции позволяют строить здания любой сложности и конфигурации. К тому же эта технология не ограничивается заводскими стандартами. Конструктор имеет невероятно широкое поле для творчества.

Зачем необходимо армирование?

Безусловно, бетон имеет множество преимуществ. Он обладает большой прочностью и спокойно переносит перепады температур. Даже вода и мороз не могут ему повредить. Тем не менее его сопротивление растяжениям находится на крайне низком уровне. Здесь в игру вступает арматура. Она позволяет добиться повышенной прочности ЖМК и сократить расход бетона.

В теории в качестве материала для армирования можно использовать всё что угодно, даже стебли бамбука. На практике же применяется всего два вещества: композит и сталь. В первом случае — это целый комплекс материалов. В основе изделия могут лежать базальтовые или углеродные волокна. Они заливаются полимером. Композитная арматура имеет небольшой вес и не поддаётся коррозии.

Сталь имеет несравнимо большую механическую прочность, к тому же её стоимость относительно невелика. В процессе армирования железобетонных монолитных конструкций используются:

  • уголки,
  • швеллеры,
  • двутавровые балки,
  • гладкие и рифленые стержни.

При создании сложных строительных объектов в основе монолитной железобетонной конструкции укладываются металлические сетки.

Строительная арматура может иметь разную форму. Но в продаже чаще всего можно найти только стержневую. Рифлёные стальные стержни чаще всего используются при строительстве малоэтажных зданий. Низкая цена и хорошее сцепление с бетоном делают их очень привлекательными для потенциальных покупателей.

Стальные стержни, используемые при создании железобетонных монолитных конструкций, в большинстве случаев имеют толщину от 12 до 16 миллиметров. Они отлично защищают структуру от разрывов. Нагрузку, создаваемую при сжатии, компенсирует сам бетон.

Особенности армирования в зависимости от типа устройства фундамента

Когда закладывается фундамент дома очень важно соблюдать правила армирования монолитных железобетонных конструкций. Это позволит избежать множества дефектов и гарантирует долгий срок эксплуатации объекта. Согласно устройству железобетонных монолитных конструкций выделяют три типа фундамента.

Плитный фундамент

При его армировании применяется стержневая рифлёная арматура. Толщина железобетонной монолитной конструкции (плиты фундамента) зависит от количества этажей и материала, используемого при строительстве. Стандартный показатель 15—30 сантиметров.

Качественное армирование плитного фундамента должно иметь два слоя. Нижняя и верхняя решётки соединяются посредством подпорок. Они формируют зазор нужного размера.

Главным отличием профессионального армирования железобетонных монолитных конструкций — является полное сокрытие всех элементов стального каркаса. При этом в плиточном фундаменте арматура не сваривается между собой, а вяжется посредством проволоки.

Ленточный фундамент

Устройство данной железобетонной монолитной конструкции состоит из решётки, которая размещается в верхней части и берёт на себе все нагрузки, связанные с растяжением.

Сваривать элементы каркаса крайне не рекомендуется — это уменьшит его прочность. При этом слой бетона, разделяющий стальные элементы и грунт должен быть не менее пяти сантиметров. Это защитит металл от коррозии.

В железобетонной монолитной конструкции очень важно соблюдать правильную дистанцию между продольными стержнями. Граничный показатель — 400 миллиметров. Поперечные элементы используются тогда, когда высота каркаса превышает 150 мм.

Дистанция между соседними стержнями в железобетонной монолитной конструкции не может превышать 25 миллиметров. Углы и соединения дополнительно усиливаются. Это позволяет придать фундаменту большую прочность.

Свайный фундамент

Данная технология используется при возведении строения на пучинистых грунтах. Оптимальная дистанция от ростверка до грунта 100—200 мм. Зазор позволяет создать воздушную подушку, что положительно влияет на утеплённость всего дома. К тому же воздушная подушка позволяет избежать образования на первом этаже сырости.

При создании свай используется бетон марки М300 и выше. Предварительно бурятся скважины, в которые вкладывается рубероид. Он также служит опалубкой. Каркас из арматуры опускается внутрь каждого отверстия.

Конструкция каркаса состоит из продольной рифленой арматуры. Сечение стержней от 12 до 14 мм. Крепление осуществляется посредством проволоки. Минимальный диаметр сваи — 250 мм.

Стены и перекрытия

Эти элементы также требуют особых правил армирования. В принципе они сходны с нормами создания фундаментов, но есть некоторые отличия:

  • Минимальный продольный диаметры арматуры в стене — 8 мм, максимальный шаг в длину 20 сантиметров, поперечный — 35 см. Сечение поперечной арматуры не менее 25% от сечения продольной.
  • Перекрытия. Диаметр арматуры определяется расчётными нагрузками. Минимальный показатель восемь миллиметров. Дистанция между стержнями не больше 20 мм.
  • При создании как стен, так и перекрытий допускается использование сетки.

    Нормы армирования для стен и перекрытий отличаются из-за разной степени нагрузок, которые испытывают эти железобетонные монолитные конструкции.

    Главное правило армирования

    Прочность всей железобетонной монолитной конструкции зависит от связи бетона и арматуры. Необходимо чтобы бетон передавал часть нагрузки стальной арматуре без потери энергии.

    Главное правило армирования гласит, что в железобетонной монолитной конструкции не должно быть нарушения связи. Максимально допустимое значение данного параметра — 0,12 миллиметра. Надёжное соединение бетона и арматуры — гарантия прочности и долговечности всего здания.

    Проектирование

    Что такое проектирование?

    Проектирование железобетонных монолитных конструкций — это создание чертежей на основе собранных геодезических данных, имеющихся материалов и предназначения здания. Несущую систему монолитного каркасного здания составляют перекрытия, фундамент и колонны.

    Задача конструктора правильно рассчитать нагрузки на все элементы и составить оптимальный проект с учётом особенностей грунтов и климатических условий. Сам процесс создания железобетонных монолитных конструкций включает в себя:

    • компоновку;
    • расчёт конструирования второстепенной балки;
    • расчёт нагрузок;
    • расчет перекрытий по предельным состояниям первой и второй группы.

    Для упрощения математических расчётов используется специальное программное обеспечение, к примеру, AutoCAD.

    Проектировка и расчёт согласно СНиПам

    По факту пособие по проектированию монолитных железобетонных конструкций — это и есть СНиП. Это некий свод правил и норм, который содержит стандарты строительства жилых и нежилых зданий на территории РФ. Этот документ динамически обновляется в зависимости от изменений технологий строительства и подходов к безопасности.

    СП по монолитным железобетонным конструкциям разрабатывался ведущими учёными и инженерами. СНиП 52-103-2007 касается ЖМК, сделанных на основе тяжелого бетона без предварительного напряжения арматуры. Согласно данному документу различают такие типы несущих элементов:

    При использовании железобетонных монолитных конструкций допускается проектировка этажей в разной конструктивной системе несущих элементов.

    При расчёте параметров несущих элементов согласно СНиПам учитывается:

  • Определение усилия, действующего на фундамент, перекрытия и другие элементы конструкции.
  • Амплитуда вибраций перекрытий верхних этажей.
  • Расчёт устойчивости формы.
  • Оценка сопротивляемости процессу разрушения и несущей способности здания.

    Данный анализ позволяет не только определить параметры железобетонных монолитных конструкций, но и узнать срок эксплуатации здания.

    Особое внимание при проектировании уделяется несущей железобетонной монолитной конструкции. При этом учитываются такие параметры:

  • Возможность и скорость образования трещин.
  • Температурно-усадочные деформации бетона при затвердевании.
  • Прочность ЖМК при снятии опалубки.

    Если правильно произвести все расчёты, то созданное изделие прослужит десятки лет даже в самых экстремальных условиях.

    Когда рассчитываются параметры несущих ЖМК используются линейные и нелинейные жёсткости железобетонных элементов. Вторые назначают для сплошных упругих тел. Нелинейная жёсткость вычисляется по поперечному сечению. При этом очень важно учитывать возможность образования трещин и других деформаций.

    Порядок выполнения строительных работ с ЖМК

    Каждая строительная компания старается достичь наилучшей организации производственного процесса. Для этого используются СНиПы и международные стандарты. Тем не менее существует сложившийся порядок работ, который позволяет гарантировать максимальное качество будущей постройки:

  • Вначале осуществляется расчёт по четырём основным видам нагрузки: постоянная, временная, кратковременная, особая. К примеру, при создании фундамента для агрегатов, создающих сильные вибрации, используются исключительно железобетонные монолитные конструкции.
  • Геодезическая разведка, составление плана, а также анализ общих показателей.
  • Определение точек возводимого строения.
  • Армирование конструкций. Оно бывает двух типов: предварительно напряжённое и обычное.
  • Монтаж опалубки. Опалубка позволяет создать необходимую форму для будущей железобетонной конструкции. При этом она может классифицироваться по разборности, материалу, назначению и конструкции.
  • Бетонирование. Есть четыре основных способа заливки бетона: с лотка миксера прямо на опалубку; посредством автобетононасоса; через желоб; при помощи колокола. Для уплотнения бетона применяют вибратор.

    Очень важную часть в создании прочной и надёжной железобетонной монолитной конструкции играет уход за бетоном. Всё дело в том, что этот материал может застыть только при определённых условиях. Обычно полное затвердевание бетона занимает около 15—28 суток, если не используются специальные сорта цемента. Чтобы предотвратить испарение влаги в жаркое время года ЖМК поливают водой.

    Как проходит монтаж?

    Данная технология позволяет экономить на материалах, ведь именно компания застройщик определяет целесообразность использования тех или иных элементов конструкции. Монтаж железобетонных монолитных конструкций проходит прямо на строительной площадке и состоит из таких этапов:

  • На площадку укладывается материал для армирования. Важно соблюдать нормативные расстояния между элементами каркаса. Это гарантирует равномерность растекания бетона.
  • Заливается бетон. На этом этапе необходимо следить, чтобы в смесь не попали масляные вещества. Они препятствуют связыванию бетона.
  • При необходимости устанавливается дополнительное оборудование, ускоряющее сушку.

    Железобетонные монолитные конструкции позволяют создавать кривые линии, что делает общую архитектуру здания в разы богаче и насыщеннее.

    Итоги

    Железобетонные монолитные конструкции позволяют строить здания в минимальные сроки, используя современные сорта бетона. Важным этапом строительства является проектирование. Именно правильные расчёты позволяют создать прочную постройку с длительным сроком эксплуатации.

    Железобетонные монолитные конструкции используются как в промышленном строительстве, так и жилищном. Сравнительно небольшая стоимость и прочность делают их незаменимыми в производственных цехах и при возведении многоэтажных зданий.

    Армирование железобетонных конструкций: минимальный и максимальный процент усиления. Защитный слой бетона

    Самостоятельное строительство уже давно перестало быть чем-то из ряда вон выходящим: при наличии необходимых знаний, навыков и помощников – это вполне осуществимо. Строительные работы редко обходятся без заливки бетона, который в большинстве своем, должен содержать в себе определенное количество армирующих элементов. Надежность и долговечность бетонного объекта может гарантировать только армирование железобетонных конструкций по ГОСТу.

    Конечно, самостоятельная заливка железобетонных объектов под строительство многоэтажного дома или другого подобного сооружения не представляется возможным, так как такие масштабы требуют промышленного подхода. В данном случае мы рассмотрим лишь случаи, которые могут возникнуть в частной практике, где вы вполне можно обойтись своими силами.

    Усиление фундамента под силу выполнить своими руками

    В данной статье будут приведены правила армирования железобетонных конструкций, которые применяются в частном строительстве.

    Армирование бетона

    Заливка монолитной плиты с усилительным каркасом: фото

    Армирование необходимо для повышения прочностного потенциала бетона – железобетон во много раз превосходит обыкновенный аналог по прочности на излом. Повышенную надежность обеспечивает металлический каркас, сваренный из арматуры, который располагается в толще бетона. Он играет роль скелета, который многократно усиливает выносливость объекта (узнайте здесь, как происходит армирование газобетона).

    В современном строительстве применение железобетона является стандартом де-факто, несмотря на то, что его цена на порядок выше обычного аналога. Однако наличие арматуры не превращают бетон в железобетон. Иногда в опалубку просто погружаются сваренный наугад каркас, который затем заливается раствором – некоторые строители по ошибке могут назвать это железобетоном, но это заявление ошибочно.

    Минимальный процент усиления

    Чтобы превратить обычный бетон в железобетон, недостаточно просто заложить в него металлический каркас. Существует такое понятие как минимальный процент армирования железобетонных конструкций, посредством которого определяется степень перехода одного состояния в другое. Если процент вхождения металлических элементов окажется меньше необходимого, то данное изделие относится к бетонным наименованиям.

    Обратите внимание! Данный раздел основывается на пункте 5.16 СНиП 2.03.01-84 “Бетонные и железобетонные конструкции”

    Готовый каркас и металлического прута

    Если количество металлических составляющих будет меньше необходимого, то такой тип усиления считается конструкционным укреплением – при этом изделие не становится железобетоном.

    Минимальный процент усиления объекта продольной арматурой рассчитывается исходя из площади сечения бетонного элемента.

    • Во внецентренно растянутых и изгибаемых объектах, в том случае если продольная сила располагается вне пределов рабочей высоты сечения, усиление должно составлять не менее 0,05% (арматура S) от площади сечения бетонного элемента;
    • Во внецентренно растянутых объектах, где продольная сила располагается между арматурами S и S”, усиление должно составлять не менее 0,06% (арматура S и S”) от площади сечения бетонного элемента;
    • Во внецентренно сжатых объектах минимальный процент вхождения металлических элементов составляет от 0,1 до 0,25% (арматура S и S”).

    Обратите внимание! Если продольное усиление располагается по контуру сечения (равномерно), то площадь сечения арматуры должна составлять вдвое больше указанных величин. Это также относится к центрально-растянутым объектам.

    Максимальный процент усиления

    Сборка каркаса перед заливкой

    В бетонных работах инструкция – «чем больше, тем лучше» – неуместна.

    Чрезмерное количество металлических составляющих существенно ухудшит технические характеристики изделия.

    Как и в предыдущем случае, здесь также имеются нормативы.

    • Независимо от класса бетона и усилительных элементов, наибольший процент вхождения арматуры в сечение изделия не должен превышать 5% в случае с колоннами и 4% во всех остальных случаях. При этом бетонный раствор должен эффективно просачиваться между деталями усилительного каркаса;

    Обратите внимание! В обоих случаях, в качестве усилительных элементов подразумевается горячекатаная сталь для армирования железобетонных конструкций.

    Защитный слой бетона

    Схема Ж/б в разрезе

    Усилительный каркас должен покрываться защитным слоем бетона, который обеспечивает совместную работу бетона и металлического скелета. Также он защищает металл от коррозии и воздействия окружающей среды (см.также статью «Защита бетона от влаги: способы и применяемые материалы»).

    Толщина слоя над металлическим каркасом составляющими должна составлять.

    В стенках и плитах (толщиной мм) не менее:

    • Свыше 100 мм – 15 мм;
    • До 100 мм и включительно – 10 мм;

    В ребрах и балках:

    • Свыше 250 мм – 20 мм;
    • До 250 и включительно – 15 мм;

    В фундаментных балках:

    Обратите внимание! Если защитный слой будет иметь большее значение, то для дополнительного укрепления используется проволока для армирования железобетонных конструкций, которая перекроет излишек.

    Укрепление лестничного пролета

    • Монолитных с цементной подушкой – 35 мм;
    • Сборных – 30 мм
    • Монолитных без цементной подушки – 70 мм;

    Обратите внимание! Данный раздел составлен в соответствии с пунктом 5.5 СНиП 2.03.01-84 “Бетонные и железобетонные конструкции”

    Также следует отметить, что алмазное бурение отверстий в бетоне или резка железобетона алмазными кругами должна учитывать расположение и структуру усилительного каркаса. Отделение частей или сквозные отверстия могут существенно снизить потенциал прочности объекта. Если же речь идет о полном демонтаже объекта, то данное обстоятельство учитывать нет необходимости.

    Соблюдение норм и стандартов будет надежной гарантией долговечности и надежности железобетонных конструкций. Более подробную информацию по данной теме вы можете получить посредством просмотра видео в этой статье (узнайте также как осуществляется прогрев бетона сварочным аппаратом).

    Армирование конструкций

    Армирование конструкций Арматурные элементы и состав процесса армирования ненапрягаемых конструкций. В современном строительстве ненапрягаемые конструкции армируют укрупненными монтажными элементами в виде сварных сеток, плоских и пространственных каркасов с изготовлением их вне возводимого здания и последующим крановым монтажом. Только в исключительных случаях сложные конструкции армируют непосредственно в проектном положении из отдельных стержней ( штучная арматура) с соединением в законченный арматурный элемент сваркой или вязкой. Сетка представляет собой взаимно перекрещивающиеся стержни, соединенные в местах пересечения преимущественно сваркой. Плоские каркасы состоят из двух, трех, четырех продольных стержней и более, соединенных поперечными, наклонными или непрерывными ( змейкой) стержнями. Применяют плоские каркасы главным образом для армирования балок, прогонов, ригелей и других линейных конструкций.

    Пространственные каркасы состоят из плоских каркасов, соединенных при необходимости монтажными стержнями, и применяют для армирования легких и тяжелых колонн, балок, ригелей, фундаментов. Пространственные каркасы несущих опалубку и временные нагрузки арматурных элементов изготовляют из жестких прокатных профилей с соединением их на сварке арматурными стержнями. Штучную арматуру изготовляют различных конфигураций в зависимости от направления воспринимаемых сил и характера ее работы в конструкции ( рабочая, распределительная, монтажная, хомуты). Для нужд строительства металлургическая промышленность изготовляет арматурную сталь, подразделяемую на две основные группы: стержневую и проволочную.

    Армирование ненапрягаемых железобетонных конструкций состоит из: заготовки ( как правило, централизованно) арматурных элементов; транспортирования арматуры на объект строительства, сортировки ее и складирования; укрупнительной сборки на приобъектной площадке арматурных элементов и подготовки арматуры, монтируемой отдельными стержнями; установки ( монтажа) арматурных блоков, пространственных каркасов, сеток и стержней; соединения монтажных единиц в проектном положении в единую армоконструкцию. Таким образом, все процессы армирования железобетонных конструкций можно объединить в две группы: предварительное изготовление арматурных элементов и установка их в проектное положение.

    Монтаж ненапрягаемой арматуры. Монтаж арматуры ведут, как правило, с использованием механизмов и приспособлений, применяемых для других видов работ ( опалубочных, бетонных и др.) и предусмотренных проектом производства работ. Ручная укладка допускается только при массе арматурных элементов не более 20 кг. Соединяют арматурные элементы в единую армоконструкцию сваркой и нахлесткой, а в исключительных случаях — вязкой. Соединение нахлесткой без сварки используют при армировании конструкций сварными сетками или плоскими каркасами с односторонним расположением рабочих стержней арматуры и при диаметре арматуры не выше 32 мм. При этом способе стыкования арматуры величина перепуска ( нахлестки) зависит от характера работы элемента, расположения стыка в сечении элемента, класса прочности бетона и класса арматурной стали ( регламентируется СНиПом).

    При стыковании сварных сеток из круглых гладких стержней в пределах стыка следует располагать не менее двух поперечных стержней. При стыковании сеток из стержней периодического профиля приваривать поперечные стержни в пределах стыка не обязательно, но длину нахлестки в этом случае увеличивают на пять диаметров. Стыки стержней в нерабочем направлении ( поперечные монтажные стержни) выполняют с перепуском в 50 мм при диаметре распределительных стержней до 4 мм и 100 мм при диаметре более 4 мм. При диаметре рабочей арматуры 26 мм и более сварные сетки в нерабочем направлении рекомендуется укладывать впритык друг к другу, перекрывая стык специальными стыковыми сетками с перепуском в каждую сторону не менее 15 диаметров распределительной арматуры, но не менее 100 мм.

    При монтаже арматуры необходимо элементы и стержни устанавливать в проектное положение, а также обеспечить защитный слой бетона заданной толщины, т.е.расстояние между внешними поверхностями арматуры и бетона. Правильно устроенный защитный слой надежно предохраняет арматуру от корродирующего воздействия внешней среды. Для этого в конструкциях арматурных элементов предусматривают специальные упоры или удлиненные поперечные стержни. Этот метод применяют в том случае, если конструкция работает в сухих условиях. Обеспечить проектные размеры защитного слоя бетона можно также с помощью бетонных, пластмассовых и металлических фиксаторов, которые привязывают или надевают на арматурные стержни. Пластмассовые фиксаторы характеризуются высокими технологическими свойствами. Во время установки на арматуру пластмассовое кольцо за счет присущей ему упругости немного раздвигается и плотно охватывает стержень.

    Защитный слой в плитах и стенах толщиной до 10 см должен быть не менее 10 мм; в плитах и стенах более 10 см — не менее 15 мм; в балках и колоннах при диаметре продольной арматуры 20… 32 мм — не менее 25 мм, при большем диаметре — не менее 30 мм.

    Смонтированную арматуру принимают с оформлением акта, оценивая при этом качество выполненных работ. Кроме проверки ее проектных размеров по чертежу проверяют наличие и место расположения фиксаторов и прочность сборки армоконструкции, которая должна обеспечить неизменяемость формы при бетонировании.

    Напряженное армирование конструкций. Предварительное напряжение в монолитных и сборно- монолитных конструкциях создается по методу натяжения арматуры на затвердевший бетон. В свою очередь, по способу укладки напрягаемой арматуры метод подразделяют на линейный и непрерывный. При линейном способе в напрягаемых конструкциях при их бетонировании оставляют каналы ( открытые или закрытые). По приобретении бетоном заданной прочности в каналы укладывают арматурные элементы и производят их натяжение с передачей усилий на напрягаемую конструкцию. Линейный способ применяют для создания предварительного напряжения в балках, колоннах, рамах, трубах, силосах и многих других конструкциях. Непрерывный способ заключается в навивке с заданным натяжением бесконечной арматурной проволоки по контуру забетонированной конструкции. В отечественном строительстве способ применяют для предварительного напряжения стенок цилиндрических резервуаров.

    При линейном армировании напрягаемые элементы применяют в виде отдельных стержней, прядей, канатов и проволочных пучков. Линейное армирование включает: заготовку напрягаемых арматурных элементов; образование каналов для напрягаемых арматурных элементов; установку напрягаемых арматурных элементов с анкерными устройствами; напряжение арматуры с последующим инъецированием закрытых каналов или забетонированием открытых каналов. Для стержневой арматуры используют горячекатаную сталь периодического профиля классов А-II, А-IIIв, A-IV4, Ат-IV, A-V, At-V, и At-VI и высопрочную проволоку B-II и Вр-Н. Заготовка стержневых элементов состоит из правки, чистки, резки, стыковой сварки и устройства анкеров. Для устройства анкеров к концам стержней приваривают коротыши из стали. Коротыши имеют резьбу, на которую навинчивают гайки, передающие через шайбы на бетон нагрузки натяжения. Арматурные нераскручивающиеся пряди и канаты изготовляют из высокопрочной проволоки диаметром 1,5…5 мм. Промышленность выпускает пряди трех-, семи- и девятнадцатипроволочные ( классов П-3, П-7 и П-19) диаметром 4,5… 15 мм. Из прядей делают канаты.

    Пряди и канаты поступают с заводов намотанными на металлические катушки. Их сматывают с катушек, пропускают через правильные устройства, одновременно очищая от грязи и масла, и режут на необходимую длину. Для анкеровки прядей ( канатов) применяют гильзовые наконечники. Гильзу надевают на заготовленный конец пряди ( каната), запрессовывают прессом или домкратом и затем на ее поверхности нарезают или накатывают резьбу для крепления муфты домкрата, с помощью которого натягивается прядь ( канат). Проволочные пучки изготовляют из высокопрочной проволоки. Проволоку располагают с заполнением всего сечения или по окружности. В первом случае пучок оборудуют гильзовым, а в втором — гильзостержневым анкером.

    Готовые элементы прядевой и канатной арматуры наматывают на контейнеры барабанного типа, а анкеры смазывают солидолом и обматывают мешковиной. Для образования каналов для напрягаемых арматурных элементов в подготовленную к бетонированию конструкцию устанавливают каналообразователи, диаметр которых на 10… 15 мм больше диаметра стержня или арматурного пучка. Для этого применяются стальные трубы, стержни, резиновые рукава с проволочным сердечником и др. Так как каналообразователи извлекают через 2…3 ч после того, как конструкция забетонирована, то их, за исключением рукавов, во избежание сцепления с бетоном через каждые 15…20 мин поворачивают вокруг оси.

    При напряженном армировании крупноразмерных конструкций каналы устраивают путем закладки стальных тонкостенных гофрированных трубок, которые остаются в конструкции. После того как бетон набрал проектную прочность, в каналы устанавливают ( протягивают) арматуру. Затем производят натяжение арматуры гидравлическими домкратами одиночного действия. Эти домкраты состоят из цилиндра, поршня со штоком, захвата со сменными гайками, позволяющими натягивать арматуру с различными диаметрами анкерующих устройств, и упора. После присоединения арматуры к захвату и подачи масла в правую полость цилиндра арматуру натягивают до заданного усилия. Затем подвертывают анкерную гайку до упора в конструкцию, переключают правую полость на слив и подают масло в левую часть. На этом натяжение заканчивается и домкрат отсоединяют. Для привода гидродомкратов применяют передвижные масляные насосные станции, смонтированные на тележке со стрелой для подвешивания домкратов. Натяжению арматуры и передаче усилия на бетон, как правило, сопутствуют: выпрямление арматурного элемента ( пучка или стержня); обжатие бетона под опорными прокладками; трение между арматурой и стенками канала и пр.

    Для устранения этих явлений, вызывающих неравномерное натяжение по длине арматурного элемента, выполняют следующие операции. Вначале арматуру натягивают с усилием, не превышающим 0,1 необходимого усилия натяжения пучка ( стержня). При этом арматурные стержни выпрямляются и плотно прилегают к стенкам канала. Опорные прокладки также плотно прилегают к поверхности напрягаемой конструкции. Усилие, равное 0,1 от расчетного, принимают за нуль отсчета при дальнейшем контроле натяжения по манометру и деформациям. В конструкциях с длиной прямолинейного канала не более 18 м арматуру ввиду небольших сил трения напрягают с одной стороны. Выравнивать напряжения вдоль арматуры можно также путем продольного вибрирования в процессе натяжения. Вибрировать можно с помощью специального приспособления на глухом анкере.

    При длине прямолинейных каналов свыше 18 м и криволинейных каналах арматуру натягивают с двух сторон конструкций. Вначале одним домкратом арматуру натягивают до усилия, равного 0,5 от расчетного, и закрепляют с той стороны конструкции, с которой она напрягалась. Затем с другой стороны конструкции другим домкратом арматуру натягивают до 1,1 от расчетного усилия (1 ,1 — коэффициент технологической перетяжки арматуры). Выдержав ее в таком состоянии 8… 10 мин, величину натяжения уменьшают до заданной и закрепляют второй конец напрягаемой арматуры. Для устранения перепада напряжений вдоль арматуры иногда применяют пульсирующее натяжение, т.е.несколько раз кратковременно повторяют этот процесс, последовательно увеличивая величину натяжного усилия, а затем сбрасывают излишнее усилие.

    Если в сечении конструкции имеется несколько арматурных элементов, то натяжение начинают с элемента, расположенного ближе к середине сечения. При наличии только двух элементов, расположенных у граней, натяжение производят ступенями или одновременно двумя домкратами. При большом числе элементов в первых натяжение будет постепенно снижаться по мере натяжения последующих в результате возрастающего укорочения бетона от сжатия. Эти элементы затем вновь подтягивают. Заключительной операцией является инъецирование каналов, к которому приступают сразу после натяжения арматуры. Для этого применяют раствор не ниже М300 на цементе М400… 500 и чистом песке. Нагнетают раствор растворонасосом или пневмонагнетателем с одной стороны канала. Инъецирование ведут непрерывно с начальным давлением с 0,1 МПа и последующим повышением до 0,4 МПа. Прекращают нагнетание, когда раствор начнет вытекать с другой стороны канала. В последнее время применяют способ без устройства каналов; в этом случае исключаются операции по их инъецированию. Арматурные канаты или стержни перед укладкой покрывают антикоррозийным составом, а затем фторопластом ( тефлоном), имеющим почти нулевой коэффициент трения. При натяжении канат относительно легко скользит в теле бетона.

    Особенности армирования ж/б балок

    Предприятия, производящие железобетонные изделия, выпускают широкую номенклатуру продукции. Не всегда стандартные изделия можно использовать при реализации проекта конкретной постройки. Наверняка многие обращали внимание на строителей, размещающих в опалубке стальную арматуру. Все понимают, что стальные прутки обеспечивают высокие прочностные характеристики железобетонной балки.

    Однако правильно определить диаметр прутков, их количество могут только специалисты, владеющие расчетной методикой. Для большинства обывателей, не сталкивавшихся с методологией выполнения расчёта балок прямоугольного сечения, этот процесс остается загадкой.

    Арматурный стержень воспринимает значительные нагрузки на растяжение, но неустойчив к сжатию и изгибу.

    Серьезной строительной задачей является выполнение расчёта армирования. Потребность в этом возникает при выполнении строительных мероприятий в частной застройке. Можно, конечно, обратиться к профессионалам или использовать специальные программные средства. Но, к сожалению, такая возможность не всегда имеется, поэтому рекомендуем ознакомиться с представленными в материале рекомендациями. Уверены, они помогут вам принять правильное решение, осуществляя армирование балок.

    Разновидности балок

    Что представляет собой конструкция железобетонной балки? Каковы отличия по способу установки и форме сечения?

    Балка – изготовленный из бетона и армированный стальными прутками элемент, работающий в составе строительной конструкции и воспринимающий силовые нагрузки. Такие строительные конструкции еще называют ригелями или прогонами. В зависимости от метода установки они могут быть:

    • Монолитными элементами, представляющими собой свободно расположенные или защемленные с одной или двух сторон однопролетные конструкции.
    • Комбинированными (сборно-монолитными) конструкциями, в том числе консольными.
    • Сборными, состоящими из отдельных частей, входящих в состав общей многопролетной конструкции.

    Цельные армированные балки используются при строительстве как элементы фундаментов и перекрытий.

    Сечение элементов различное и может иметь прямоугольную форму, представлять трапецию, тавр, двутавр или другие виды. Согласно строительным нормам, ширина сечения принимается равной 5 сантиметрам и представляет собой цифровой ряд, начиная от 100 мм, и заканчивая 250 мм. Высота изделия соответственно изменяется.

    Комбинация арматурных стержней и бетона даёт комбинацию их свойств

    Основные задачи усиления

    Обсуждая вопрос усиления железобетонных конструкций прямоугольного профиля, остановимся отдельно на терминологии. В специализированных строительных источниках процесс повышения прочности бетонных конструкций, связанный с установкой арматуры, называется армированием ЖБ изделий. Что обозначают буквы аббревиатуры? Ответим:

    • Ж – сокращённое обозначение наличия в конструкции железных (стальных) арматурных стержней или сетчатых каркасов, способствующих увеличению прочностных характеристик.
    • Б – характеризует материал бетон, массив которого усилен закладными элементами.

    Основными задачами усиления железобетонных балочных элементов являются:

    • Обеспечение высокой несущей способности изделий.
    • Повышение прочностных характеристик.
    • Противодействие разрушению.
    • Увеличение устойчивости к восприятию повышенных нагрузок.

    Решение поставленных задач по обеспечению прочности осуществляется путем армирования и реализации специальных методов, направленных на:

    • оценку прочностных характеристик;
    • проверку выносливости бетонной опоры под воздействием многократных циклов нагружения;
    • контроль устойчивости железобетонной балки, сохранения ее целостности и расположения.

    Большинство заводских изделий производится с использованием предварительно напряжённой арматуры

    Назначение расчетов

    Расчёт позволяет определить площадь элементов усиления, в зависимости от заданных усилий, или несущую способность, согласно фактическим размерам применяемых прутков. В частности, выполнение предварительных расчетов помогает определить:

    • Размер прутков в диаметре.
    • Длину элементов.
    • Характер расположения в изделии.

    Мнение эксперта: Армирование ЖБ балок

    Усилить бетонные конструкции возможно при помощи металлических каркасов, арматурных сеток и отдельных прутьев арматуры. Наиболее оптимальный диаметр стержней для арматурных прутьев – 10-12 мм. В процессе создания изгибов запрещается использовать болгарку и другие инструменты для искусственного нагрева прутьев. Перед непосредственным процессом армирования необходимо провести расчеты для определения правильного расположения арматуры в конкретном случае.

    Для определения оптимального варианта армирования конкретной бетонной балки учитывайте следующие параметры:

    • геометрические размеры изделия (длина, ширина, высота);
    • толщину защитного слоя, характеризующую расстояние от арматуры до внешней плоскости бетонной поверхности;
    • величину распределенной или точечной нагрузки.

    Принципы армирования

    Усиление бетонных конструкций производится с использованием следующих элементов:

    • Отдельных стальных арматурных стержней.
    • Металлических каркасов.
    • Стальных сеток.

    В высотных зданиях арматурный каркас служит основой всей конструкции

    В процессе армирования прутки могут устанавливаться как в растянутых участках бетонной балки, так и в сжатых. Специфика применения опор при выполнении строительных работ позволяет отнести их к изгибаемым элементам, в которых под воздействием прилагаемых усилий возникает растянутая зона, сжатый участок, так как действует изгибающий момент и поперечные усилия.

    Армирование балок осуществляется стержнями, расположенными продольно и поперечно. В зависимости от направления приложения сил, верхний и нижний арматурные прутки каркаса могут быть как растянутыми, так и сжатыми.

    Рассмотрим основные части горизонтального каркаса усиления, находящегося под воздействием приложенных вертикальных усилий. Он состоит из следующих элементов:

    • расположенных в верхней части каркаса стержней, находящихся в сжатом состоянии;
    • находящихся внизу прутков, растягивающихся под воздействием нагрузок и упрочняющих бетонную балку;
    • поперечных элементов, обеспечивающих прочность прямоугольного сечения;
    • распределительной арматуры, связывающей элементы единым контуром.

    Требования к арматуре

    К поверхности элементов усиления предъявляется комплекс специальных требований.

    При армировании ребра плоскими сварными каркасами стержни сваривают между

    • Обезжирьте прутки.
    • Очистите стержни от грязи, краски и неметаллических покрытий.
    • Освободите поверхность от отслаивающегося налета ржавчины, используя металлическую щетку.

    Бытует мнение о целесообразности увлажнения арматурных стержней водой за неделю до укладки и бетонирования. В результате она покроется ржавчиной, и к ней сильней будет прилипать раствор бетона. Специалисты подтверждают, что присутствующая на поверхности прутков ржавчина, не имеющая отслоений, увеличивает коэффициент сцепления арматуры с раствором. Прутки с ржавой поверхностью эффективнее склеиваются бетонным составом, но, при этом, ржавых отслоений не допускается.

    Стальные стержни, имеющие переменный профиль, обладают 3-кратным запасом сопротивления выдергиванию по сравнению с гладкой арматурой.

    Особенности усиления

    Усиление арматурными стержнями осуществляют с применением продольных и поперечных прутков арматуры с последующей сваркой или вязкой. Выполняя вязку каркасов, применяйте арматуру с Г-образным изгибами.

    Производя армирование балок, соблюдайте следующие требования:

    • применяйте прутки диаметром более 10 миллиметров для продольного армирования;
    • используйте в качестве ненапрягаемых арматурных прутков стальные стержни, диаметром не менее 12 мм, для вязаных каркасов, предназначенных для опор, высотой более 40 сантиметров;
    • обеспечьте интервал между продольными силовыми элементами каркаса не меньше 25 миллиметров – для стержней нижнего уровня, и 30 мм – для прутков верхнего слоя.

    Как правило, из железобетона устраивают два вида элементов — балки и плиты

    В зависимости от изменения класса бетона, из которого изготавливаются изделия, изменяется диаметр продольных прутков. Для арматуры, имеющей прочность 500 МПа, ее размер в диаметре должен быть:

    • 16 мм – для легкого бетона класса В12.5 и ниже.
    • 25 мм – при армировании массива класса В15-В25.
    • 32 мм – при усилении состава категории В30 и выше.

    Если выполняется усиление балок из ячеистых составов класса ниже В10, допускается уменьшение диаметра продольно расположенных прутков – меньше 16 миллиметров.

    Выполнение отгибов

    К местам стыков и расположения отгибов стержней предъявляются специальные требования, так как они определяют прочностные характеристики. Определяя место загиба прутка, соблюдайте рекомендации:

    • выдерживайте величину интервала от загиба до внешней поверхности (не более 50 миллиметров);
    • не применяйте короткие прутки, имеющие один наклонный участок и свободно расположенные в каркасе («плавающие» стержни);
    • обеспечьте величину угла изгиба к оси изделия на уровне 45 градусов. Допускается увеличение для высоких конструкций (более 80 см высотой) значения угла до 60 градусов, а для низких, работающих при точечных усилиях, уменьшение до 30 градусов;

    При размещении отгибов надо следить, чтобы на участке, где их ставят по расчету, в любом сечении, нормальном к оси балки, был по крайней мере один отгиб

    • производите отгиб на одном продольном прутке в каждой из плоскостей каркаса изделия, имеющего ширину меньше 20 сантиметров. При увеличении ширины изделия загните не менее 2-х прутков в каждой плоскости;
    • располагайте отогнутые части стержней симметрично относительно оси;
    • определяйте расчётным путём интервал между наклонными участками прутков, расположенных в разных плоскостях каркаса.

    Специфика поперечного армирования

    Производя поперечное усиление каркаса, выполняйте следующие требования:

    • Применяйте вертикальные элементы усиления, если высота балки составляет более 15 сантиметров.
    • Не устанавливайте поперечную арматуру, если высота меньше 15 сантиметров.
    • При наличии одного продольного стержня арматуры или сварной сетки, строительные нормы допускают отсутствие поперечных прутков.
    • Вычисляйте расчетным методом, учитывающим особенности сварки каркаса, значение диаметра расположенных в поперечной плоскости стержней.

    Соблюдение величины защитного слоя

    Выдерживание необходимого значения защитного слоя, представляющего собой интервал от арматуры до внешней поверхности изделия, позволяет предохранить каркас от проникновения влаги и обеспечить оптимальный режим работы в бетонном массиве. Кроме того, защитный слой определяет огнестойкость конструкции.

    Для балок, предназначенных для установки в фундаментах и сборных конструкциях, значение не должно быть меньше диаметра арматуры и составляет 30 миллиметров.

    Фиксированный размер величины слоя обеспечивается путем применения специальных подкладок и пластиковых фиксаторов, обеспечивающих неподвижность каркаса и необходимое положение при заливке бетона. Если бетонные изделия имеют сечение меньше 250 мм, то размер защитного слоя для поперечного армирования составляет один сантиметр. При большем размере сечения достаточно полтора сантиметра для обеспечения защитного интервала.

    Ошибки при усилении

    В процессе армирования бетонных конструкций имеют место нарушения технологии армирования, вызывающие снижение прочности бетонных изделий. Выполняя работы, обратите внимание на следующие моменты:

    • Не допускается применять вместо рабочей арматуры трубы изделия из алюминия, отходы промышленного производства, проволоку и некондиционный металл произвольной конфигурации. Применение указанных материалов, не обладающих необходимыми эксплуатационными характеристиками, вызовет деформацию бетона и его растрескивание.
    • Запрещается нагревать участки загибов автогеном, применять болгарку, надпиливая деформируемые участки. Это вызывает ослабление стержней и приведет к непоправимым последствиям под воздействием усилий. Все операции по загибу прутков производятся без искусственного нагрева.
    • Прутки усиления класса А-III сгибаются на угол не более 90 градусов с применением специальной оправки, радиус которой равен 5-кратному размеру сечения арматуры. Выполнение загиба на развернутый угол (180 градусов) уменьшает прочность конструкции на 10 процентов.

    Итоги

    Соблюдение изложенных рекомендаций по усилению бетонных изделий обеспечит прочностные характеристики конструкции, их эксплуатацию на протяжении длительного времени.

  • Admin
    Оцените автора
    Строительный портал
    Добавить комментарий

    2 × 4 =

    Для вашего удобства сайт использует cookie для хранения данных. Продолжая использовать сайт, Вы даете свое согласие на работу с этими файлами
    Принять
    Политика конфиденциальности
    Adblock
    detector