Для чего нужно повторное заземление?

Для чего нужно повторное заземление?

Для чего нужно повторное заземление?

Назначение повторного заземления нулевого защитного проводника

Рис. 4.9. Замыкание на корпус в системе TN-S

При замыкании фазы на корпус в сети, не имеющей повторного заземления нулевого защитного проводника (рис.4.9), участок нулевого защитного проводника, находящийся за местом замыкания, и все присоединенные к нему корпуса окажутся под напряжением относительно земли U к , равным:

(4.3)

где I к – ток КЗ, проходящий по петле фаза-нуль, А; zPEN – полное сопротивление участка нулевого защитного проводника, обтекаемого током I к, Ом (т. е. участка АВ ).

Напряжение U к будет существовать в течение аварийного периода, т. е. с момента замыкания фазы на корпус до автоматического отключения поврежденной установки от сети.

Если для упрощения пренебречь сопротивлением обмоток источника тока и индуктивным сопротивлением петли фаза-нуль, а также считать, что фазный и нулевой защитный проводники обладают лишь активными сопротивлениями RL1 и RPE , то (4.3) примет вид:

. (4.4)

Если нулевой защитный проводник будет иметь повторное заземление с сопротивлением r П (на рис. 4.9 это заземление показано пунктиром), то U к снизится до значения, определяемого формулой:

, (4.5)

где I з ток, стекающий в землю через сопротивление r п, А; U ав падение напряжения в нулевом защитном проводнике на участке АВ ; r сопротивление заземления нейтрали источника тока, Ом.

Итак, повторное заземление нулевого защитного проводника снижает напряжение на зануленных корпусах в период замыкания фазы на корпус.

При случайном обрыве нулевого защитного проводника и замыкании фазы на корпус за местом обрыва (при отсутствии повторного заземления) напряжение относительно земли участка нулевого защитного проводника за местом обрыва и всех присоединенных к нему корпусов, в том числе корпусов исправных установок, окажется близким по значению фазному напряжению сети (рис. 4.10, а). Это напряжение будет существовать длительно, поскольку поврежденная установка автоматически не отключится, и ее будет трудно обнаружить среди исправных установок, чтобы отключить вручную.

Рис. 4.1 0 . Замыкание на корпус при обрыве нулевого защитного проводника

а – в сети без повторного заземления нулевого защитного проводника, б – в сети с повторным заземлением нулевого защитного проводника

Если же нулевой защитный проводник будет иметь повторное заземление, то при обрыве его сохранится цепь тока I з, А, через землю (рис 4.10, б), благодаря чему напряжение зануленных корпусов, находящихся за местом обрыва, снизится до значений, определяемых формулой

(4.6)

При этом корпуса установок, присоединенных к нулевому защитному проводнику до места обрыва, приобретут напряжение относительно земли:

(4.7)

где r – сопротивление заземления нейтрали источника тока, Ом.

Итак, повторное заземление нулевого защитного проводника значительно уменьшает опасность поражения током, возникающую в результате обрыва нулевого защитного проводника и замыкания фазы на корпус за местом обрыва, но не может устранить ее полностью, т. е. не может обеспечить тех условий безопасности, которые существовали до обрыва.

Для чего нужно повторное заземление?

Назначение повторного заземления нулевого защитного проводника

Рис. 4.9. Замыкание на корпус в системе TN-S

При замыкании фазы на корпус в сети, не имеющей повторного заземления нулевого защитного проводника (рис.4.9), участок нулевого защитного проводника, находящийся за местом замыкания, и все присоединенные к нему корпуса окажутся под напряжением относительно земли U к , равным:

(4.3)

где I к – ток КЗ, проходящий по петле фаза-нуль, А; zPEN – полное сопротивление участка нулевого защитного проводника, обтекаемого током I к, Ом (т. е. участка АВ ).

Напряжение U к будет существовать в течение аварийного периода, т. е. с момента замыкания фазы на корпус до автоматического отключения поврежденной установки от сети.

Если для упрощения пренебречь сопротивлением обмоток источника тока и индуктивным сопротивлением петли фаза-нуль, а также считать, что фазный и нулевой защитный проводники обладают лишь активными сопротивлениями RL1 и RPE , то (4.3) примет вид:

. (4.4)

Если нулевой защитный проводник будет иметь повторное заземление с сопротивлением r П (на рис. 4.9 это заземление показано пунктиром), то U к снизится до значения, определяемого формулой:

, (4.5)

где I з ток, стекающий в землю через сопротивление r п, А; U ав падение напряжения в нулевом защитном проводнике на участке АВ ; r сопротивление заземления нейтрали источника тока, Ом.

Итак, повторное заземление нулевого защитного проводника снижает напряжение на зануленных корпусах в период замыкания фазы на корпус.

При случайном обрыве нулевого защитного проводника и замыкании фазы на корпус за местом обрыва (при отсутствии повторного заземления) напряжение относительно земли участка нулевого защитного проводника за местом обрыва и всех присоединенных к нему корпусов, в том числе корпусов исправных установок, окажется близким по значению фазному напряжению сети (рис. 4.10, а). Это напряжение будет существовать длительно, поскольку поврежденная установка автоматически не отключится, и ее будет трудно обнаружить среди исправных установок, чтобы отключить вручную.

Рис. 4.1 0 . Замыкание на корпус при обрыве нулевого защитного проводника

а – в сети без повторного заземления нулевого защитного проводника, б – в сети с повторным заземлением нулевого защитного проводника

Если же нулевой защитный проводник будет иметь повторное заземление, то при обрыве его сохранится цепь тока I з, А, через землю (рис 4.10, б), благодаря чему напряжение зануленных корпусов, находящихся за местом обрыва, снизится до значений, определяемых формулой

(4.6)

При этом корпуса установок, присоединенных к нулевому защитному проводнику до места обрыва, приобретут напряжение относительно земли:

(4.7)

где r – сопротивление заземления нейтрали источника тока, Ом.

Итак, повторное заземление нулевого защитного проводника значительно уменьшает опасность поражения током, возникающую в результате обрыва нулевого защитного проводника и замыкания фазы на корпус за местом обрыва, но не может устранить ее полностью, т. е. не может обеспечить тех условий безопасности, которые существовали до обрыва.

Как правильно делать заземления опорных конструкций

В современном мире освещение окружает нас повсеместно: и дома и на улице. Причем роль наружного типа освещения очень важна в городах и селах, ведь оно позволяет избегать множества проблем в вечернее и ночное время суток.
При создании наружного типа освещения одним из важных этапов монтажа является заземление опор.

В ходе заземления для опор наружного типа освещения, необходимо понимать и знать основные правила, которые регламентируются соответствующей документацией (например, ПУЭ). Особенно важна данная процедура для воздушных линий (ВЛ) и сети опор наружного типа освещения. Обо всем, что касается этой процедуры, мы поговорим в данной статье.

Для чего нужно

Опоры системы наружного освещения

Заземление для сети опор наружного типа освещения или ВЛ (0,4, 6-10, 20 и 35 кв) играет большое значение, поскольку препятствует риску получения электротравмам при соприкосновении с элементами конструкции в ситуации, когда произошло повреждение изоляции кабеля. При наличии заземления на металлической опоре сети наружного типа освещения или ВЛ, напряжение «разливается» по земле, тем самым становясь безопасным для людей. Данный показатель зависит от того, какое сопротивление имеет почва, в которой установлена опора ВЛ (0,4, 6-10, 20 и 35 кв). В результате, даже если где-то и произошло нарушение изоляции ВЛ, конструкции останутся безопасными.

При штатных условиях работы штыревые изоляторы, смонтированные на опорах, будут обеспечивать надежную изоляцию всех проводов от конструкционных элементов. Но бывают ситуации, когда напряжение в сети
значительно превышает то напряжение, на которое была рассчитана ВЛ (0,4, 6-10, 20 и 35 кв). В такой ситуации перенапряжения возможен пробой изоляции ВЛ и, как следствие, выход сети из строя.
Для того чтобы ограничить значение перенапряжения и повысить безопасность, необходимо понизить сопротивление для «растекания тока». С этой целью и устанавливают на ВЛ (0,4, 6-10, 20 и 35 кв) и подпорах наружного типа освещения защитное заземление.

Особенности процедуры

Заземление металлических опор

Контур заземления формируют исходя из того, из чего была изготовлена опора. На сегодняшний день применяется три варианта конструкций:

  • железобетонные. Здесь при наличии сети заземленной нейтралью, вместе с арматурой конструкций, защиту оформляют через подсоединение к заземленному проводу (нулевому) специального проводника. Последний должен идти диаметром от 6 мм (не менее);
  • деревянные. На деревянных подпорах штыри и крюки не заземляют;

Обратите внимание! Заземление на деревянных опорах ставят только тогда, когда линия электропередач или системы наружного освещения проходит по населенным пунктам, где имеются одно- и двухэтажные постройки. Населенный пункт в такой ситуации также не должен иметь излишне возвышающихся труб (экранированных), деревьев и т.д. Тут появляется потребность в защите сети от перенапряжений атмосферного порядка с помощью заземляющих устройств. Их сопротивление – до 30 Ом (не более).

  • металлические опоры. Здесь защита делается по аналогии с железобетонными конструкциями. Такие опоры встречаются чаще всего. Они постепенно вытесняют из обихода деревянные и даже железобетонные опоры.
Читать еще:  Как заделать течь в полипропиленовой трубе?

При заземлении ВЛ (0,4, 6-10, 20 и 35 кв) необходимо учитывать и расстояние между соседними опорами. Обычно расстояние между ними составляет 100 или 200 м. Это параметр определяется среднегодовым числом гроз, характерным для данной местности.
Обязательно следует делать заземление опор (повторное или нет), имеющих ответвление к сооружениям, где находится большое количество людей.
Для предохранения от перенапряжения применяются две разновидности заземлителей:

  • вертикальные штыри, которые зарываются в землю вертикально;
  • горизонтальные пластины. Такие заземлители как правило применяются для каменистых почв.

Вид заземлителей предопределяется типом грунтов в месте монтирования опор ВЛ (0,4, 6-10, 20 и 35 кв) или наружного освещения.

Как происходит сама процедура

Монтаж заземления (повторное или нет) для ВЛ (0,4, 6-10, 20 и 35 кв), сети электропередач или опор наружного освещения осуществляется следующим образом:

  • роем траншею (около 0,5 м). Глубина траншеи до 1 м нужна для пахотной земли. Отмерять глубину нужно от начала опор;
  • длина траншеи, а также количество заземлителей должны быть указаны в проекте для сооружения ВЛ (0,4, 6-10, 20 и 35 кв);
  • затем выполняем погружение заземлителей, формируя контур;
  • далее происходит обварка (или прутом или полоской);
  • после этого делается защита сварочных стыков от возможной коррозии.

После контура заземления проводится установка заземляющего спуска. Он выполняется из стального прутка или полоски и обладает теми же размерами, что и соединение, установленное между заземлителями. Контур защиты подсоединяется к спуску снизу. Спуск сверху подводится к металлическим нетокопроводящим частям конструкции опоры.
Эта процедура хорошо видна на рисунке.

Заземление на опоре (деревянной):
а — общий внешний вид, б — вариант заземления крюков

а — общий внешний вид, б — вариант заземления крюков

К деревянной опоре после контура (заземлитель 1 и 2) подводят соединяющую полосу (2) и спуск (3). Здесь спуск монтируют часто (шаг — 300 мм), скрепляя скобами. При этом спуск, а точнее его верхняя часть (4), будет выступать над опорой, выполняя роль молниеотвода. На рисунке (б) представлено заземление для металлической опоры в сети электропередач или наружного освещения. Контур защиты от перенапряжения здесь также будет соединяться со спуском (1). Но в этой ситуации спуск будет присоединен сваркой перемычки (2) или болтовыми зажимами, которые направляют нулевой потенциал земли на нулевой провод (3) и крюк (4).

Требования ПУЭ

ПУЭ является регламентирующей документацией, на которую следует опираться при реализации защитных заземляющих мероприятий (повторное оно или нет) опор сети электропередач или наружного освещения. Контур заземления следует всегда устанавливать по этим правилам, чтобы избежать проблем в дальнейшем.
В ПУЭ изложены такие рекомендации:

  • при наличии электроустановки с глухозаземленной нейтралью прежде всего следует заземлить нулевые провода начала ВЛ;

Заземление на каждой опоре

Заземление на каждой опоре

Обратите внимание! Контур заземления в данной ситуации не нужно устанавливать у первой опоры. Это обуславливается тем, что здесь нулевой провод будет наглухо подсоединен к нулевой точке источника питания.

Защитное заземление:
1 – места для сварки; 2 – сам заземлитель; 3 – проводник к заземлителю.

  • при наличии электроустановок с глухозаземленной нейтралью повторное заземление как защита от перенапряжения нужно устанавливать не очень часто (шаг — километр линии);
  • любое последующее повторное заземление обязано иметь сопротивление до 10 Ом (максимум). При наличии установки с мощностью более 100 кВА. Если мощность установки будет ниже, тогда сопротивление обязано быть до 30 Ом (максимум);
  • для опор ВЛ нужно выполнять заземляющие устройства, если необходима повторная защита от перенапряжения. Допускается использовать конструкции для предохранения от перенапряжений природного происхождения (молнии). В данной ситуации сопротивление для заземляющего устройства должно браться не выше 30 Ом;
  • любые металлические конструкции должны подключаться к специальным РЕN-проводникам;
  • при наличии железобетонных опор специальные РЕN-проводники необходимо подсоединять к арматуре подкосов и стоек опор;
  • При установке СИП, имеющих изолированные несущие проводники, защите от перенапряжения опоры (железобетонных и металлических деревянных, для ВЛ) не подлежат. Здесь повторное заземление нужно для штырей и крюков. Это делается для того, чтобы сформировать предохранение от перенапряжений атмосферного происхождения.

Следуя этим рекомендациям, установка защиты от перенапряжения, вне зависимости от того, повторное оно или нет, пройдет качественно. Также удастся подобрать правильное сопротивление для каждого варианта опор.

Особенности

При формировании заземления для BЛ до 1 кВ следует придерживаться следующих нюансов:

  • при наличии сети с заземленной нейтралью делается перемычка из неизолированного проводника для арматуры опор (железобетонных/металлических). Ее присоединяют к нулевому проводу посредством болтовых зажимов (ответвительных);
  • контактные соединения перемычки перед ее установкой необходимо хорошо очистить и покрыть вазелином;
  • при наличии сети с изолированной нейтралью для этих же опор установку защиты проводят путем подключения специальных заземляющих устройств. В данном случае сопротивление этих конструкций не должно преступать планку в 50 Ом;
  • заземление конструкций для создания системы наружного освещения при наличии кабельного питания осуществляется через металлическую оболочку кабеля. Это происходит, если имеется заземленная нейтраль.

В других ситуациях все определяется типами систем, опорами и другими составляющими.

Заключение

При создании заземления на различных типах опор, входящих в систему наружного освещения или ВЛ, необходимо в обязательном порядке руководствоваться установленными правилами и рекомендациями, приведенных в ПУЭ. Только так можно добиться качественного и правильного заземления, которое будет защищать опоры от повреждения изоляции кабелей и предотвращать рисковые ситуации, когда людей может бить током при прикосновении к опорам.

1.3. Назначение повторного заземления нулевого защитного проводника.

Повторное заземление нулевого защитного проводника практически не влияет на отключающую способность схемы зануления.

Однако при отсутствии повторного заземления нулевого защитного проводника возникает опасность для людей, прикасающихся к зануленному оборудованию в период пока существует замыкание фазы на корпус. Кроме того, в случае обрыва нулевого защитного проводника и замыкании фазы на корпус за местом обрыва, эта опасность резко повышается, поскольку напряжение относительно земли оборванного участка нулевого провода и присоединенных к нему корпусов может достигать фазного напряжения сети. Рассмотрим эти два случая.

При замыкании фазы на корпус в сети, не имеющей повторного заземления нулевого защитного проводника, участок нулевого защитного проводника, находящийся за местом замыкания, и все присоединенные к нему корпуса окажутся под напряжением относительно земли равным; рис.5.

где Iк – ток КЗ, проходящий по петле «фаза-нуль», А;

Zнэ – полное сопротивление участка нулевого защитного проводника, обтекаемого током Iк, Ом.

На другом участке нулевого защитного проводника (ближе к источнику энергии) напряжение будет изменяться от Uн до 0 по прямой линии. Эти напряжения будут существовать в течение аварийного периода, т.е. с момента замыкания фазы на корпус до автоматического отключения поврежденной установки от сети.

Если для упрощения пренебречь сопротивлением обмоток источника питания и индуктивным сопротивлением цепи фаза-нуль, а также считать, что фазный и нулевой защитный проводники обладают лишь активными сопротивлениями Rф, Rнэ Ом, то формула примет вид:

Обычно на практике принимают Rнэ = 2 Rф, то UH = (2/3)Uф = 0,67*20 = 147В. Очевидно, существует реальная угроза поражения людей.

Чтобы уменьшить напряжение Uн надо снизить Rнэ, т.е. увеличить сечение нулевого защитного проводника в 8 раз превышающего сечение фазного проводника, что экономически нецелесообразно.

Если нулевой защитный проводник будет иметь повторное заземление с сопротивлением rn Ом, то Uн снизится до значения:

Читать еще:  Металлический ростверк на винтовых сваях

где. Iэ – ток, стекающий в землю через сопротивление rn; UЭМ – падение напряжения в нулевом защитном проводнике от места замыкания до нейтрали источника питания; r – сопротивление заземления нейтрали источника тока, Ом. При тех же допущениях падение напряжения в фазном проводнике составит Uф/3, а в нулевом защитном 2Uф/3. Тогда выражение (6) примет вид

Следовательно, повторное заземление нулевого защитного проводника снижает напряжение на зануленных корпусах в период замыкания фазы на корпус. Однако, этого снижения Uн = 74В недостаточно для полной безопасности человека.

При случайном обрыве нулевого защитного проводника и замыкании фазы на корпус за местом обрыва (при отсутствии повторного заземления) напряжение относительно земли участка нулевого защитного проводника за местом обрыва и всех, присоединенных к нему корпусов, в том числе корпуса исправных установок, окажется близким по значению фазному напряжению сети. Это напряжение будет существовать длительно, поскольку поврежденная установка автоматически не отключится и ее будет трудно обнаружить среди исправных установок, чтобы отключить вручную, рис.6.

Если же нулевой защитный проводник будет иметь повторное заземление, то при обрыве его сохранится цепь тока Iк через землю, благодаря чему напряжение зануленных корпусов, находящихся за местом обрыва, снизится до:

Повторное заземление нулевого защитного проводника значительно уменьшает опасность поражения электрическим током возникающую в результате обрыва нулевого защитного проводника и замыкания фазы на корпус за местом обрыва, но не может устранить ее полностью, т.е. не обеспечить тех условий безопасности, которые существовали до обрыва. В связи с этим требуется тщательная прокладка нулевого защитного проводника, чтобы исключить возможность его обрыва; в нулевом защитном проводнике запрещается ставить выключатели, предохранители и другие приборы, способные нарушить его целостность.

Что такое повторное заземление и как правильно его сделать

Как заземлить металлические опоры наружного освещения

Согласно инструкции по молниезащите и устройству сетей заземления, все металлические опоры, используемые для обустройства систем наружного освещения, следует заземлить.

Сущность защитного заземления заключается в том, что в случае нарушения изоляции электрический ток стекает на землю. Таким образом, в зоне растекания распределяются не опасные для человека напряжения, зависящие от удельного сопротивления почвы и расположения заземлителя.

В том случае, если наружное освещение устанавливается в сетях с изолированной нейтралью, штыри или крюки фазных проводов на металлических опорах, а также арматура и любые металлические конструкции должны быть заземлены при помощи специальных устройств, состоящих непосредственно из заземлителей и заземляющих проводников.

Заземлители представляют собой специальные металлические элементы, которые размещаются в грунте и могут быть как вертикальными в виде стержней, так и горизонтальными в виде стальных полос. Вертикальные стержни забиваются на глубину до 3 метров, при этом их верхняя часть должна находится приблизительно на расстоянии пол метра от основания почвы. На такой же глубине располагаются и горизонтальные проводники, которые, чаще всего, применяются на каменистых почвах. Заземляющие проводники, используемые для подсоединения заземлителей должны иметь диаметр как минимум 6 мм. Соединяются между собой заземляющие проводники и заземлители сваркой, а места соединений окрашиваются краской.

Если наружное освещение устанавливается в сетях с заземленной нейтралью, штыри и крюки фазных проводов на металлических опорах, а также арматура и любые металлические конструкции должны подсоединяться к нулевому рабочему проводу. Как правило, это выполняется при помощи специального болта приваренного непосредственно к опоре.

Таким образом, заземление металлических опор наружного освещения с кабельным питанием производится:

  • В сетях с изолированной нейтралью посредством использования металлической оболочки кабеля;
  • В сетях с заземленной нейтралью через нулевую жилу, которая соединена с оболочкой кабеля.

Важно помнить, что после проведения всех электромонтажных работ следует провести замер сопротивления заземляющего устройства с помощью специального прибора. Значение сопротивления не должно быть выше 50 Ом

Заземление металлических опор может выполнять функции молниеотводов

Особенно это важно, когда система наружного освещения устанавливается вдали от зданий на открытых площадках. Ведь в случае попадания молнии в опору без заземления перенапряжение может возникнуть в целом по сети, что может привести к серьезным последствиям

Групповое заземление

Подвеска заземляющего троса.

Групповые заземления осуществляют при условии, что общее количество подряд стоящих опор, подлежащих такому заземлению, не менее трех.

Подвеска заземляющего троса.

Групповыми заземлениями , кроме указанных выше, оборудуют опоры контактной сети, стоящие на перегонах в выемках за кюветом ( с большим габаритом), опоры на пассажирских платформах или за платформами и опоры изолирующих сопряжений анкерных участков и в горловинах станций, в зоне которых установлены секционные разъединители с моторными приводами на дистанционном управлении.

При монтаже групповых заземлений ( см. § 45) сначала раскатывают заземляющий трос, развозят и разгружают возле опор хомуты и детали подвески троса. Один конец троса закрепляют на опоре, где он должен анкероваться.

Предупредительные сигнальные знаки элементов показано об отключении и включении тока на AID ( а ЗНЭК.

Какие элементы контактной сети надо заземлять и как осуществляют одиночные и групповые заземления .

Опоры, устанавливаемые дальше 15 м, заземляют с помощью троса группового заземления , подвешиваемого на опорах на высоте не менее 4 5 м от поверхности земли. Трос группового заземления присоединяют к тяговым ниткам ближайших железнодорожных путей или специальным контурам заземления не менее чем в двух пунктах. Трос группового заземления выполняют из алюминиевого провода марок А-70-А-185 в зависимости от тока в контактной сети. Спуски от троса группового заземления выполняют из круглой стали диаметром не менее 12 мм.

Расчетная схема заземления IV группы опор.| Зависимость переходного сопротивления га-г протяженного углубленного заземлителя от длины его 1Г, удельного сопротивления грунта р и глубины заложения t. 41а.

При постоянном токе воздушные групповые заземлители присоединяются к тяговым рельсам, к отсасывающей линии или к специальным заземлителям; опоры и конструкции присоединяются к проводу группового заземления через искровые промежутки; углубленные в землю групповые заземлители или заземляющие контуры у опор при постоянном токе не применяются.

При постоянном токе воздушные групповые заземлители присоединяют к тяговым рельсам, к отсасывающей линии или к специальным заземлителям; опоры и конструкции присоединяют к проводу группового заземления через искровые промежутки; углубленные в землю групповые заземлители или заземляющие контуры у опор при постоянном токе не применяют.

Заземления опор, на которых подвешивают провода питающих или отсасывающих линий и расположенных вдали от железнодорожных путей, производят па отсасывающие провода или при их отсутствии с помощью группового заземления .

Опоры, устанавливаемые дальше 15 м, заземляют с помощью троса группового заземления, подвешиваемого на опорах на высоте не менее 4 5 м от поверхности земли. Трос группового заземления присоединяют к тяговым ниткам ближайших железнодорожных путей или специальным контурам заземления не менее чем в двух пунктах. Трос группового заземления выполняют из алюминиевого провода марок А-70-А-185 в зависимости от тока в контактной сети. Спуски от троса группового заземления выполняют из круглой стали диаметром не менее 12 мм.

В грунтах с большим удельным сопротивлением одиночный заземлитель ( стержень, труба, полоса) часто не может обеспечить заданного сопротивления растеканию тока из-за малой поверхности. В таких случаях необходимо выполнять групповое заземление , состоящее из параллельно соединяемых отдельных заземлителей.

В грунтах с большим удельным сопротивлением одиночный заземлитель ( стержень, труба, полоса) часто не может обеспечить заданного сопротивления растеканию тока из-за малой поверхности. В таких случаях необходимо выполнять групповое заземление , состоящее из параллельно соединяемых отдельных заземлителей.

Повторное заземление — нулевой провод

Повторные заземления нулевого провода в сетях постоянного тока должны быть осуществлены с помощью отдельных искусственных заземлителей, которые не должны иметь металлических соединений с подземными трубопроводами. Заземляющие устройства на линиях постоянного тока, выполненные для защиты от грозовых перенапряжений, рекомендуется использовать для повторного заземления нулевого рабочего провода.

Повторные заземления нулевого провода в сетях постоянного тока должны осуществляться посредством искусственных заземлителей, которые не должны иметь металлических соединений с подземными трубопроводами.

Повторные заземления нулевого провода в сетях постоянного тока должны быть осуществлены при помощи отдельных искусственных заземлителей, которые не должны иметь металлических соединений с подземными трубопроводами. Заземляющие устройства на ВЛ постоянного тока, выполненные для защиты от грозовых перенапряжений ( см. 2.4.26), рекомендуется использовать для повторного заземления нулевого рабочего провода.

Читать еще:  Винтовые сваи как закручивать в ручную?

Повторные заземления нулевого провода в сетях постоянного тока должны осуществляться при помощи отдельных искусственных заземлителей, которые не должны иметь металлических соединений с подземными трубопроводами. Заземляющие устройства на линиях постоянного тока, выполненные для защиты от грозовых перенапряжений ( см. 11 — 4 — 26), рекомендуется использовать для повторного заземления нулевого провода.

Повторные заземления нулевого провода в сетях постоянного тока должны быть осуществлены при помощи отдельных искусственных заземлителей, которые не должны иметь металлических соединений с подземными трубопроводами. Заземляющие устройства на В Л постоянного тока, выполненные для защиты от грозовых перенапряжений ( см. 2.4.26), рекомендуется использовать для повторного заземления нулевого рабочего провода.

Повторные заземления нулевого провода в системах постоянного тока осуществляются с помощью отдельных искусственных заземлителей, которые не должны иметь металлических соединений с подземными трубопроводами.

Повторное заземление нулевого провода через каждые 200 — 250 м, а также на концах всех ответвлений уменьшает опасность поражения людей током при обрыве нулевого провода и замыкания фазы за местом обрыва. Заземление зануленного корпуса улучшает условия безопасности, так как создает дополнительное заземление нулевого провода. Нулевой провод должен иметь проводимость, равную не менее половины проводимости фазного провода. На нем запрещается ставить предохранители, рубильники и другие устройства, нарушающие целостность цепи.

Повторные заземления нулевого провода в сетях постоянного тока должны быть осуществлены при помощи отдельных искусственных заземлителей, которые не должны иметь металлических соединений с подземными трубопроводами. Заземляющие устройства на ВЛ постоянного тока, выполненные для защиты от грозовых перенапряжений ( см. 2.4.26), рекомендуется использовать для повторного заземления нулевого рабочего провода.

Заземление электроприемников.| Заземление металлических оболочек в проводках освещения.

Повторные заземления нулевого провода производят вблизи вводов в помещения с контуром заземления.

Повторные заземления нулевого провода в сетях постоянного тока должны осуществляться при помощи отдельных искусственных ваземлителей, которые не должны иметь металлических соединений с подземными трубопроводами. Заземляющие устройства на линиях, выполненные для защиты от грозовых перенапряжений ( см. 11 — 4 — 26), рекомендуется использовать для повторного заземления нулевого провода.

Схема зануления при наличии короткого замыкания фазы А на корпус и замыкания фазы С на землю.

Повторное заземление нулевого провода предназначено для снижения напряжения на корпусах оборудования при замыкании фазы на корпус как при исправном, так и при оборванном нулевом проводе.

Повторные заземления нулевого провода в сетях постоянного тока осуществляются при посредстве искусственных заземлителей, которые не должны иметь металлических соединений с подземными трубопроводами.

Повторные заземления нулевого провода в сетях постоянного тока должны осуществляться при посредстве искусственных заземли-телей, которые не должны иметь металлические соединения с подземными трубопроводами.

ОБЩИЕ ПОЛОЖЕНИЯ.

1.1.Настоящая инструкция определяет порядок эксплуатации и ремонта воздушных линий электропередач / ВЛ/ напряжением 0,4-10кВ. Инструкция составлена в соответствии с «Правилами технической эксплуатации ПТЭ», «Правилами устройства электроустановок»/ПУЭ/, «Правилами безопасной эксплуатации электроустановок»/ПБЭЭ/, «Методическими указаниями по организации системы эксплуатационного обслуживания воздушных линии электропередач напряжением 0,4-20кВ», «Типовой инструкции по техническому обслуживанию и капитальному ремонту воздушных линий электропередачи напряжением 0,4-20кВ».
1.2.Эксплуатация ВЛ заключается в проведении технического и оперативного обслуживания, восстановительного и капитального ремонтов.
1.3. Техническое обслуживание ВЛ состоит из комплекса мероприятий, направленных на предохранение элементов BЛ от преждевременного износа.
1.4.Капитальный ремонт ВЛ заключается в проведении комплекса мероприятий по поддержанию и восстановлению первоначальных эксплуатационных показателей и параметров ВЛ. При капитальном ремонте дефектные детали и элементы заменяются либо на равноценные, либо на более прочные, улучшающие эксплуатационные характеристики ВЛ.

Для чего нужно повторное заземление ВЛИ в фото

Повторное заземление ВЛИ – это специальное заземление PEN проводника от комплексной трансформаторной подстанции. Основным предназначением подобного заземления считается повышение безопасности определенных участков ЛЭП.

Если вы не знаете, что такое ВЛИ, тогда помните, что это воздушная линия электропередач, которая имеет изолированную проволоку СИП. Воздушные линии будут прокладываться от трансформаторной подстанции, которая имеет глухозаземленную нейтраль на опорах из дерева или железобетона.

Основные виды опор

Деревянные

Подобные конструкции в большинстве случаев будут изготавливаться из дерева, которое не будет иметь коры. Длина одного бревна будет составлять от 5 до 13 метров. Толщина опоры может составлять от 12 до 26 см. Чтобы подобная деревянная опора меньше поддавалась гниению медленнее его будут покрывать специальным антисептиком. Деревянные опоры могут иметь два вида, к которым относят C1 и C2.

Железобетонные

Подобные приспособления на сегодняшний день выполняются из арматуры и бетона. Они могут напоминать вид прямоугольника или трапеции. Это железобетонное устройства также будет иметь маркировку, которая имеет название CB. После этих букв также будут писаться цифры, которые означают длину столба. Например, вы можете встретить маркировку CB-95 и это означает, что железобетонный столб будет иметь длину 9.5 метров. На фото ниже вы сможете увидеть, как выглядит ЖБ опора:

На современном рынке можно встретить следующие конструкции:

Чтобы выполнить вторичное заземление PEN проводника с двух сторон столба приваривают арматуру.

Для чего это нужно?

На данный момент многие люди просто не знают, что такое повторное заземление ВЛИ и почему оно так называется. Все дело в том, что проводной кабель уже заземлен на комплексную трансформаторную подстанцию. Система TN-C-S (трансформаторная подстанция с глухозаземленной нейтралью) представляет собою 2 или 4 провода СИП, которые будут проводиться по ВЛИ. Если вам будет интересно, тогда можете прочесть про использование изолирующей штанги.

Один из всех проводников будет считаться основным – PEN проводник. Все остальные провода будут фазными. PEN проводник будет разделяться на PE (нулевой защитный) и N (нулевой рабочий). Так будет в случае того, если проводник будет располагаться на опоре и на устройстве будет стоять вводное устройство (ВУ) или в щитке в посещении. Изучить эту схему вы сможете на фото ниже:

В ПУЭ будет указано, что повторное заземление ВЛИ будет означать погружение в грунт PEN и PE проводника в воздушной электрической линии с изолированными проводами.

Защитные и рабочие нулевые провода будут подсоединяться вверху ЖБ к специальному арматурному выпуску. Если присутствует подкосной столб, тогда выполнить подключение можно к нему, а не только к основному.

На фото ниже вы сможете увидеть, как нужно соорудить повторное заземление ВЛИ основного проводника с использованием прокалывающего зажима. Осуществлять подобный процесс необходимо на каждой третьей опоре ВЛ и на столбе, который будет вести к жилому зданию.

На опоре из дерева вам потребуется установить заземляющий спуск. Как правило он будет вырабатываться из металлической проволоки. Всю эту конструкцию потребуется прикрепить к штыревому электроду, который необходимо вбить в грунт. Если проволока будет больше 6 мм, тогда желательно, чтобы он был выполнен из оцинкованного металла. Если проволока будет меньше 6 мм, тогда она должна быть выполнена из черного металла с нанесенным антикоррозийным средством.

Подобным образом также будет осуществляться повторное заземление ВЛИ для ЖБ столба только без арматурного выпуска.

Согласно всем правилам устройства электроустановок, если на деревянной конструкции уже было выполнено повторное заземление PEN проводников, тогда в этом случае необходимо заземлить все штыри и крюки опоры, которые выполнены из металла. Если на столбе вы не организуете повторный заземляющий контур, тогда ничего делать не нужно.

Все электрооборудование из металла, которое будет находиться на опорах обязательно должно заземляться индивидуальными проводами. К этому типу оборудования можно отнести щиты ВУ. В случае ТП с глухозаземленной нейтралью сопротивление вторичного заземлителя должно составлять 30 Ом.

Если вы планируете сделать повторное заземление ВЛИ от трансформаторной подстанции до жилого помещения на расстояние 800 м, его необходимо будет выполнено в следующих местах:

Это было увлекательное видео, на котором показывалось, как сделать повторное заземление, а точнее о том, как забить штыри в землю.

Ссылка на основную публикацию
Adblock
detector